• 제목/요약/키워드: composite bonded patch

검색결과 50건 처리시간 0.02초

A new formulation of the J integral of bonded composite repair in aircraft structures

  • Serier, Nassim;Mechab, Belaid;Mhamdia, Rachid;Serier, Boualem
    • Structural Engineering and Mechanics
    • /
    • 제58권5호
    • /
    • pp.745-755
    • /
    • 2016
  • A three-dimensional finite element method is used for analysis of repairing cracks in plates with bonded composite patch in elastic and elastic plastic analysis. This study was performed in order to establish an analytical model of the J-integral for repair crack. This formulation of the J-integral to establish models of fatigue crack growth in repairing aircraft structures. The model was developed by interpolation of numerical results. The obtained results were compared with those calculated with the finite element method. It was found that our model gives a good agreement of the J-integral. The arrow shape reduces the J integral at the crack tip, which improves the repair efficiency.

보강재로 보수된 균열평판의 파괴역학적 해석(II)-분리 영향에 대한 연구- (Fracture Mechanics Analysis of Cracked Plate Repaired by Patch(II) - The Analysis of Debonding Effect -)

  • 정기현;양원호;조명래
    • 대한기계학회논문집A
    • /
    • 제24권9호
    • /
    • pp.2246-2251
    • /
    • 2000
  • Adhesive bonding repair methods has been used for a number of decades for construction of damaged structures. In order to evaluate the life of cracked aging aircraft structures, the repair technique which uses adhesively bonded boron/epoxy composite patches is being widely considered as a cost-effective and reliable method. But, this repair method contains many shortcomings. One of these shortcomings, debonding is major issue. When the adhesive shear stress increases, debonding is caused at the end of patch and plate interface. And this debonding is another defect except cracks propagation. In this paper, we assess safety at the cracked AI-plate repaired by Br/Epoxy composite patch. Firstly, from the view of fracture mechanics, reduction of stress intensity factors is determined by the variety of patch feature. Secondly, using the elastic analysis and finite element analysis, the distribution of adhesive shear stresses is acquired. Finally, The problem of how to optimize the geometric configurations of the patch has been discussed.

Experimental and numerical disbond localization analyses of a notched plate repaired with a CFRP patch

  • Abderahmane, Sahli;Mokhtar, Bouziane M.;Smail, Benbarek;Wayne, Steven F.;Zhang, Liang;Belabbes, Bachir Bouiadjra;Boualem, Serier
    • Structural Engineering and Mechanics
    • /
    • 제63권3호
    • /
    • pp.361-370
    • /
    • 2017
  • Through the use of finite element analysis and acoustic emission techniques we have evaluated the interfacial failure of a carbon fiber reinforced polymer (CFRP) repair patch on a notched aluminum substrate. The repair of cracks is a very common and widely used practice in the aeronautics field to extend the life of cracked sheet metal panels. The process consists of adhesively bonding a patch that encompasses the notched site to provide additional strength, thereby increasing life and avoiding costly replacements. The mechanical strength of the bonded joint relies mainly on the bonding of the adhesive to the plate and patch stiffness. Stress concentrations at crack tips promote disbonding of the composite patch from the substrate, consequently reducing the bonded area, which makes this a critical aspect of repair effectiveness. In this paper we examine patch disbonding by calculating the influence of notch tip stress on disbond area and verify computational results with acoustic emission (AE) measurements obtained from specimens subjected to uniaxial tension. The FE results showed that disbonding first occurs between the patch and the substrate close to free edge of the patch followed by failure around the tip of the notch, both highest stress regions. Experimental results revealed that cement adhesion at the aluminum interface was the limiting factor in patch performance. The patch did not appear to strengthen the aluminum substrate when measured by stress-strain due to early stage disbonding. Analysis of the AE signals provided insight to the disbond locations and progression at the metal-adhesive interface. Crack growth from the notch in the aluminum was not observed until the stress reached a critical level, an instant before final fracture, which was unaffected by the patch due to early stage disbonding. The FE model was further utilized to study the effects of patch fiber orientation and increased adhesive strength. The model revealed that the effectiveness of patch repairs is strongly dependent upon the combined interactions of adhesive bond strength and fiber orientation.

Characterization of Fracture Behavior in Repaired Skin/Stiffener Structure with an Inclined Central Crack

  • Chung, Ki-Hyun;Yang, Won-Ho;Heo, Sung-Pil
    • Journal of Mechanical Science and Technology
    • /
    • 제16권5호
    • /
    • pp.599-608
    • /
    • 2002
  • Finite element analysis for the stress intensity factor (SIF) at the skin/stiffener structure with inclined central crack repaired by composite stiffened panels is developed. A numerical investigation was conducted to characterize the fracture behavior and crack growth behavior at the inclined crack. In order to investigate the crack growth direction, maximum tangential stress (MTS) criterion are used. Also, this paper is to study the performance of the effective bonded composite patch repair of a plate containing an inclined central through-crack. The main objective of this research is the validation of the inclined crack patching design. In this paper, the reduction of stress intensity factors at the crack-tip and prediction of crack growth direction are determined to evaluate the effects of various non-dimensional design parameter including; composite patch thickness and stiffener distance. We report the results of finite element analysis on the stiffener locations and crack slant angles and discuss them in this paper. The research on cracked structure subjected to mixed mode loading is accomplished and concludes that more work using a different approaches is necessary. The authors hope the present study will aid those who are responsible for the repair of damaged aircraft structures and also provide general repair guidelines.

복합재 패치로 한쪽 면을 보강한 평판의 균열선단 진전거동 해석 (Analysis of fatigue crack growth behavior in composite-repaired aluminum plate)

  • 이우용;이정주
    • 한국복합재료학회:학술대회논문집
    • /
    • 한국복합재료학회 2004년도 춘계학술발표대회 논문집
    • /
    • pp.241-245
    • /
    • 2004
  • An analytical study was conducted to characterize the fatigue crack growth behavior of pre-cracked aluminum plates repaired with asymmetric bonded composite patch. For single-sided repairs, due to the asymmetry and the presence of out-of-plane bending, crack front shape would become skewed curvilinear started from a uniform through-crack profile, as observed from previous studies. In this study, the fatigue analysis of single-sided repairs considering crack front shape development was conducted by implementing three-dimensional successive finite element method coupled with linear elastic fracture mechanics (LEFM) concept, which enables the growing crack front to be directly traced and modeled in a step by step way. Through conducting present analysis technique, crack path of the patched plate as well as the fatigue life was evaluated with sufficient accuracy. The analytical predictions of both the crack front shape evolution and the fatigue life were in good agreement with the experimental observations.

  • PDF

Pyroeffects on Magneto-Electro-Elastic Sensor patch subjected to thermal load

  • Kondaiah, P.;Shankar, K.
    • Smart Structures and Systems
    • /
    • 제19권3호
    • /
    • pp.299-307
    • /
    • 2017
  • The magneto-electro-elastic (MEE) material under thermal environment exhibits pyroelectric and pyromagnetic coefficients resulting in pyroelectric and pyromagnetic effects. The pyroelectric and pyromagnetic effects on the behavior of multiphase MEE sensors bonded on top surface of a mild steel beam under thermal environment is presented in this paper. The aim of the study is to find out how samples having different volume fractions of the multiphase MEE composite behave in sensor applications. This is studied at optimal location on the beam, where the maximum electric and magnetic potentials are induced due to pyroelectric and pyromagnetic effects under clamped-free and clamped-clamped boundary conditions. The sensor which is bonded on the top surface of the beam is modeled using 8-node brick element. The MEE sensor bonded on mild steel beam is subjected to uniform temperature rise of 50K. It is assumed that beam and sensor is perfectly bonded to each other. The maximum pyroelectric and pyromagnetic effects on electric and magnetic potentials are observed when volume fraction is ${\nu}_f=0.2$. The boundary conditions significantly influence the pyroelectric and pyromagnetic effects on electric and magnetic potentials.

충격 손상된 카본/에폭시 복합재 구조의 패치 접착 보수 방안 적용 후 압축 강도 특성 평가 (A Study on Compressive Strength of Carbon/epoxy Composite Structure Repaired with Bonded Patches after Impact Damage)

  • 공창덕;박현범;임성진;신철진
    • Composites Research
    • /
    • 제23권5호
    • /
    • pp.15-21
    • /
    • 2010
  • 본 연구에서는 손상된 복합재 구조의 유지 보수 방안에 대한 연구를 수행하였다. 복합재료 구조의 손상 수리 방안을 제시하고 수리 절차를 카본/에폭시 적층판 복합재 구조에 적용하여 시편 시험 및 수치 해석을 통해 분석하였다. 손상은 중량 낙하식 충격 시험기를 활용하여 복합재 구조 시편에 충격 손상으로 모사하였다. 손상된 복합재 적층판 구조는 충격 손상 부위 제거 후 외부 패치 수리 기법을 적용하여 수리하였다. 충격 손상 후 유지 보수된 시편과 손상이 없는 시편의 압축 강도를 실험적 및 해석적으로 비교 분석하였다. 이를 바탕으로 유지 보수된 시편의 강도 회복 능력을 고찰하였다.

Vibration and damping characteristics of the masonry wall strengthened with bonded fibre composite patch with viscoelastic adhesive layer

  • Laib, Salaheddine;Meftah, Sid Ahmed;Youzera, Hadj;Ziane, Noureddine;Tounsi, Abdelouahed
    • Computers and Concrete
    • /
    • 제27권3호
    • /
    • pp.253-268
    • /
    • 2021
  • The present paper treats the free vibration problem of the masonry wall strengthened with thin composite plate by viscoelastic adhesive layer. For this goal two steps are considered in the analytical solution. In the first one, an efficient homogenisation procedure is given to provide the anisotropic properties of the masonry wall. The second one is dedicated to purpose simplified mathematical models related to both in-plane and out-of-plane vibration problems. In these models, the higher order shear theories (HSDT's) are employed for a more rigours description of the shear deformation trough the masonry wall and the composite sheet. Ritz's method is deployed as solution strategy in order to get the natural frequencies and their corresponding loss factors. The obtained results are validated with the finite element method (FEM) and then, a parametric study is undertaken for different kinds of masonry walls strengthened with composite sheets.

FRP 판을 거푸집 및 보강재로 활용한 콘크리트 보의 실험적 연구 (Experimental Study of Concrete Beam with FRP Plank as Formwork and Reinforcement)

  • 유승운;배한욱
    • 콘크리트학회논문집
    • /
    • 제19권1호
    • /
    • pp.67-74
    • /
    • 2007
  • FRP 판을 콘크리트 구조물의 거푸집 및 보강재로 이용하기 위한 기본적인 실험을 수행하였다. FRP 판과 콘크리트가 합성 효과를 발휘하기 위해서는 두 재료간의 부착이 중요한 요인 중의 하나이다. 이러한 부착을 확보하기 위하여 FRP 판에 두 가지 크기의 골재를 일반적으로 건설 현장에서 많이 사용하는 에폭시를 이용하여 부착 하였다. 콘크리트 보는 FRP 판만으로 인장 보강하였고 추가적인 휨 및 전단 보강은 하지 않았다. 비교를 위해 한 비교 실험 시편은 FRP 판에 골재를 부착하지 않고, 다른 한 비교 실험 시편은 FRP 판 대신에 종래의 철근으로 보강하여 실험하였다. 모든 콘크리트 보의 실험은 보의 중앙에 집중하중을 파괴까지 재하하였다. 실험 결과는 현행 ACI 318(2005)과 ACI 440(2006)과 비교 분석하였다. 본 연구 결과 FRP 판을 콘크리트 구조물의 거푸집 대용 및 인장 보강재로 충분히 활용할 수 있는 가능성을 보여주었다.

An Investigation of fan type anchorages applied to end of CFRP strips

  • Kara, M. Emin;Yasa, Mustafa
    • Steel and Composite Structures
    • /
    • 제15권6호
    • /
    • pp.605-621
    • /
    • 2013
  • CFRP strips are widely used nowadays for repair/strengthening or capacity increase purposes. Sharp bending at the ends of the CFRP strips is frequently encountered at these applications. In this study, Reinforced Concrete (RC) beam specimens that were produced with 10 MPa compression strength concrete were strengthened by using bonded CFRP strips with end anchorages to tension region. The parameters that were investigated in this study are the width of the strip, the number of applied fan anchorages and whether additional layer of CFRP patch is used or not at the strip ends. Specimens were strengthened with 100 mm wide CFRP strips with one or two anchorages at the ends. In addition CFRP patch with two and three anchorages at the ends were tested for investigating the effect of the patches. Specimens that were strengthened with three anchorages at the ends with patches were repeated with 60 and 80 mm wide CFRP strips. The most successful result was obtained from the specimen that was strengthened with 80 mm wide CFRP strips with 3 end anchorages and patches among the others at the experimental program. The numbers of anchorages that were applied to ends of CFRP strips were more effective than the width of the CFRP strips onto strength and stiffness of the specimens. Due to limited space at the ends of the strips at most three anchorages could be applied.