Browse > Article
http://dx.doi.org/10.12989/cac.2021.27.3.253

Vibration and damping characteristics of the masonry wall strengthened with bonded fibre composite patch with viscoelastic adhesive layer  

Laib, Salaheddine (Laboratoire des Structures et Materiaux Avances dans le Genie Civil et Travaux Publics, Universite Djillali Liabes)
Meftah, Sid Ahmed (Laboratoire des Structures et Materiaux Avances dans le Genie Civil et Travaux Publics, Universite Djillali Liabes)
Youzera, Hadj (Laboratoire d'Etude des Structures et de Mecanique des Materiaux, Departement de Genie Civil, Faculte des Sciences et de la Technologie)
Ziane, Noureddine (Laboratoire des Structures et Materiaux Avances dans le Genie Civil et Travaux Publics, Universite Djillali Liabes)
Tounsi, Abdelouahed (YFL (Yonsei Frontier Lab), Yonsei University)
Publication Information
Computers and Concrete / v.27, no.3, 2021 , pp. 253-268 More about this Journal
Abstract
The present paper treats the free vibration problem of the masonry wall strengthened with thin composite plate by viscoelastic adhesive layer. For this goal two steps are considered in the analytical solution. In the first one, an efficient homogenisation procedure is given to provide the anisotropic properties of the masonry wall. The second one is dedicated to purpose simplified mathematical models related to both in-plane and out-of-plane vibration problems. In these models, the higher order shear theories (HSDT's) are employed for a more rigours description of the shear deformation trough the masonry wall and the composite sheet. Ritz's method is deployed as solution strategy in order to get the natural frequencies and their corresponding loss factors. The obtained results are validated with the finite element method (FEM) and then, a parametric study is undertaken for different kinds of masonry walls strengthened with composite sheets.
Keywords
strengthened masonry structures; masonry homogenisation; damping effect; free vibration; viscoelastic materials; composite materials; height shear beam and plate theories; Ritz's method;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Corradi, M., Borri, A. and Vignoli, A. (2002), "Strengthening techniques tested on masonry structures struck by the Umbria-Marche earthquake of 1997-1998", Constr. Build. Mater., 16(4), 229-239. https://doi.org/10.1016/S0950-0618(02)00014-4.   DOI
2 Davidson, J.S., Fisher, J.W., Hammons, M.I., Porter, J.R. and Dinan, R.J. (2005), "Failure mechanisms of polymer-reinforced concrete masonry walls subjected to blast", J. Struct. Eng., 131(8), 1194-205. https://doi.org/10.1061/(ASCE)0733-9445(2005)131:8(1194).   DOI
3 Dhanasekar, M. (2010), "Review of modelling of masonry shear", Int. J. Adv. Eng. Sci. Appl. Math., 2(3), 106-118.   DOI
4 Drougkas, A., Roca, P. and Molins, C. (2015), "Analytical micro-modeling of masonry periodic unit cells-Elastic properties", Int. J. Solid. Struct., 69-70, 169-188. https://doi.org/10.1016/j.ijsolstr.2015.04.039.   DOI
5 Ehsani, M. (2005), "Strengthening of concrete and masonry structures with fiber reinforced polymers (FRP)", 30th Conference on Our World in Conference & Structures, Singapore, August.
6 Erkut, S. and Yusuf, C. (2015), "Comparison of linear and nonlinear earthquake response of masonry walls", Comput. Concrete, 16(1), 17-35. https://doi.org/10.12989/cac.2015.16.1.017.   DOI
7 Focacci, F. (2008), "Rinforzo delle murature con materiali compositi (Masonry strenghtening with composite materials)", Flaccovio, Palermo.
8 Gilstrap, J.M. and Dolan, C.W. (1998), "Out-of-plane bending of FRP-reinforced masonry walls", Compos. Sci. Technol., 58(8), 1277-1284. https://doi.org/10.1016/S0266-3538(98)00007-4.   DOI
9 Hamed, E. and Rabinovich, O. (2007), "Out-of plane behaviour of unreinforced masonry walls strengthened with FRP strips", Compos. Sci. Technol., 67, 489-500. https://doi.org/10.1016/j.compscitech.2006.08.021.   DOI
10 Hamilton, H.R. and Dolan, C.W. (2001), "Flexural capacity of glass FRP strengthened concrete masonry walls", J. Compos. Constr., 5(3), 170-178. https://doi.org/10.1061/(ASCE)1090-0268(2001)5:3(170).   DOI
11 Hamoush, S., McGinley, M., Mlakar, P. and Terro, M.J. (2002), "Out-of-plane behavior of surface-reinforced masonry walls", Constr. Build. Mater., 16(6), 341-351. https://doi.org/10.1016/S0950-0618(02)00024-7.   DOI
12 Abaqus (2003), Standard User's Manual, Version 6,4, Hibbit, Karlsson and Sorensen Inc, Pawtucket, RI, USA.
13 Hamoush, S.A., Mcginley, W.M., Mlakar, P., Scott, D. and Murray, K. (2001), "Out-of-plane strengthening of masonry walls with reinforced composites", J. Compos. Constr., 5(3), 139-145. https://doi.org/10.1061/(ASCE)1090-0268(2001)5:3(139).   DOI
14 JSCE (2001), Recommendations for Upgrading of Concrete Structures with Use of Continuous fiber Sheets, Concrete Engineering, Series 41, Tokyo Japan, Japan Society of Civil Engineer.
15 Karaca, Z., Turkeli, E. and Pergel, S. (2017), "Seismic assessment of historical masonry structures: The case of Amasya Tashan", Comput. Concrete, 20(4), 409-418. https://doi.org/10.12989/cac.2017.20.4.409.   DOI
16 Anthoine, A. (1995), "Derivation of the in-plane elastic characteristics of masonry through homogenisation theory", Int. J. Solid. Struct., 32(2), 137-163. https://doi.org/10.1016/0020-7683(94)00140-R.   DOI
17 Ahmadizadeh, M. and Shakib, H. (2016), "Experimental study of the in-plane behavior of confined stone masonry walls", J. Struct. Eng., 142, 04015145-1. https://doi.org/10.1061/(ASCE)ST.1943-541X.0001417.   DOI
18 Albert, M.L., Elwi, A.E. and Roger Cheng, J.J. (2001), "Strengthening of unreinforced masonry walls using FRPs", J. Compos. Constr., 5(2), 76-84. https://doi.org/10.1061/(ASCE)1090-0268(2001)5:2(76).   DOI
19 Almeida, F.P.A. and Lourenco, P.B. (2020), "Three-dimensional elastic properties of masonry by mechanics of structure gene", Int. J. Solid. Struct., 191-192, 202-211. https://doi.org/10.1016/j.ijsolstr.2019.12.009.   DOI
20 Belabed, Z., Bousahla, A.A., Houari, M.S.A., Tounsi, A. and Mahmoud, S.R. (2018), "A new 3-unknown hyperbolic shear deformation theory for vibration of functionally graded sandwich plate", Earthq. Struct., 14(2), 103-115. https://doi.org/10.12989/eas.2018.14.2.103.   DOI
21 Casolo, S. and Milani, G. (2010), "A simplified homogenization-discrete element model for the non-linear static analysis of masonry walls out-of-plane loaded", Eng. Struct., 32, 2352-2366. https://doi.org/10.1016/j.engstruct.2010.04.010.   DOI
22 Cecchi, A. and Sab, K. (2002), "A multi-parameter homogenisation study for modeling elastic masonry", Eur. J. Mech. A/Solid., 21(2), 249-268. https://doi.org/10.1016/S0997-7538(01)01195-0.   DOI
23 Cecchi, A. and Sab, K. (2004), "A Comparison between a 3D discrete model and two homogenisation plate models for periodic elastic brickwork", Int. J. Solid. Struct, 41(9-10), 2259-2276. https://doi.org/10.1016/j.ijsolstr.2003.12.020.   DOI
24 Kuzik, M.D., Elwi, A.E. and Roger Cheng, J.J. (2003), "Cyclic flexure tests of masonry walls reinforced with glass fiber reinforced polymer sheets", J. Compos. Constr., 7(1), 20-30. https://doi.org/10.1061/(ASCE)1090-0268(2003)7:1(20).   DOI
25 Cecchi, A., Milani, G. and Tralli, A. (2005), "Validation of analytical multiparameter homogenization models for out-of-plane loaded masonry walls by means of the finite element method", J. Eng. Mech., 131(2), 185-198. https://doi.org/10.1061/(ASCE)0733-9399(2005)131:2(185).   DOI
26 Cerrolaza, M., Sulem, J. and Elbied, A. (1999), "A Cosserat nonlinear finite element analysis of toward for blocky structures", Adv. Eng. Softw., 30, 69-83. https://doi.org/10.1016/S0965-9978(98)00059-3.   DOI
27 CNR (2004), Guide for the Design and Construction of Externally Bonded FRP Systems for Strengthening Existing Structures, National Research Council, Italy.
28 Khiloun, M., Bousahla, A.A., Kaci, A., Bessaim, A., Tounsi, A. and Mahmoud, S.R. (2019), "Analytical modeling of bending and vibration of thick advanced composite plates using a fourvariable quasi 3D HSDT", Eng. Comput., 130, 534-545. https://doi.org/10.1007/s00366-019-00732-1.   DOI
29 Kiss, R.M., Kollar, L.P., Jai, J. and Krawinkler, H. (2002), "Masonry strengthened with FRP subjected to combined bending and compression, Part II: Test results and model predictions", J. Compos. Mater., l36(9), 1049-1063. https://doi.org/10.1177/0021998302036009475.   DOI
30 Lee, S.J., Pande, G.N., Middleton, J. and Kralj, B. (1999), "Numerical modelling of brick masonry panels subject to lateral loading", Comput. Struct., 31(211), 473-479. https://doi.org/10.1016/0045-7949(95)00361-4.   DOI
31 Lopez, J., Oller, S., Onate, E. and Lubliner, J. (1999), "Homogeneous constitutive model for masonry", Int. J. Numer. Meth. Eng., 46, 1651-1671. https://doi.org/10.1002/(SICI)1097-0207(19991210)46:10<1651::AID-NME718>3.0.CO;2-2.   DOI
32 Milani, G., Lourenco, P.B. and Tralli, A. (2006), "Homogenised limit analysis of masonry walls, Part I: Failure surfaces", Comput. Struct., 84(3-4), 166-180. https://doi.org/10.1016/j.compstruc.2005.09.005.   DOI
33 Meftah, S.A., Daya, E.M. and Tounsi, A. (2012), "Finite element modelling of sandwich box column with viscoelastic layer for passive vibrations control under seismic loading", Thin Wall. Struct., 51, 174-185. https://doi.org/10.1016/j.tws.2011.10.015.   DOI
34 Milani, G. (2011), "Kinematic FE limit analysis homogenization model for masonry walls reinforced with continuous FRP grids", Int. J. Solid. Struct., 48(2), 326-345. https://doi.org/10.1016/j.ijsolstr.2010.10.007.   DOI
35 Milani, G. (2011), "Simple homogenization model for the nonlinear analysis of in-plane loaded masonry walls", Comput. Struct., 89, 1586-1601. https://doi.org/10.1016/j.compstruc.2011.05.004.   DOI
36 Milani, G. (2011), "Simple lower bound limit analysis homogenization model for in- and out-of-plane loaded masonry walls", Constr. Build. Mater., 25, 4426-4443. https://doi.org/10.1016/j.conbuildmat.2011.01.012.   DOI
37 Milani, G. and Cecchi, A. (2013), "Compatible model for herringbone bond masonry: linear elastic homogenization, failure surfaces and structural implementation", Int. J. Solid. Struct., 50(20-21), 3274-3296. https://doi.org/10.1016/j.ijsolstr.2013.05.032.   DOI
38 Pande, G.N., Liang, J.X. and Middleton, J. (1989), "Equivalent elastic moduli for brick masonry", Compt. Geotech., 8, 243-265. https://doi.org/10.1016/0266-352X(89)90045-1.   DOI
39 MATLAB 7.1. (2006), The MathWorksInc, Natick, MA.
40 Parisi, F., Balestrieri, C. and Aprone, D. (2016), "Nonlinear micromechanical model for tuff masonry: Experimental validation and performance limit states", Constr. Build. Mater., 105, 165-175. https://doi.org/10.1016/j.conbuildmat.2015.12.078.   DOI
41 Pietruszczak, S. and Niu, X. (1992), "A mathematical description of macroscopic behaviour of brick masonry", Int. J. Solid. Struct., 29(5), 531-546. https://doi.org/10.1016/0020-7683(92)90052-U.   DOI
42 Reddy, J.N. (1984), "A simple Higher- Order Theory of laminated composite plate", J. Appl. Mech., 51, 745-752. https://doi.org/10.1115/1.3167719.   DOI
43 Triantafillou, T.C. (1998), "Strengthening of masonry structures using epoxy bonded FRP laminates", J Compos Constr., 2(2), 96-104. https://doi.org/10.1061/(ASCE)1090-0268(1998)2:2(96).   DOI
44 Saidi, H., Bousahla, A.A. and Tounsi, A. (2016), "A simple hyperbolic shear deformation theory for vibration analysis of thick functionally graded rectangular plates resting on elastic foundations", Geomech. Eng., 11(I2), 289-307. http://dx.doi.org/10.12989/gae.2016.11.2.289.   DOI
45 Salamon, M.D.G. (1968), "Elastic moduli of a stratified rock mass", Int. J. Rock Mech. Min. Sci., 5, 519-527. https://doi.org/10.1016/0148-9062(68)90039-9.   DOI
46 Stefanou, I., Sab, K. and Heck, J.V. (2015), "Three dimensional homogenization of masonry structures with building blocks of finite strength: A closed form strength domain", Int. J. Solid. Struct., 54, 258-270. https://doi.org/10.1016/j.ijsolstr.2014.10.007.   DOI
47 Tumialan, J.G., Galati, N. and Nanni, A. (2003), "Fiber-reinforced polymer strengthening of unreinforced masonry walls subjected to out-of-plane loads", ACI Struct. J., 100(3), 321-329.
48 Turco, V., Secondin, S., Morbin, A., Valluzzi, M.R. and Modena, C. (2006), "Flexural and shear strengthening of un-reinforced masonry with FRP bars", Compos. Sci. Technol., 66, 289-296. https://doi.org/10.1016/j.compscitech.2005.04.042.   DOI
49 Valente, M. and Milani, G. (2016), "Seismic assessment of historical masonry towers by means of simplified approaches and standard FEM", Constr. Build. Mater., 108, 74-104. https://doi.org/10.1016/j.conbuildmat.2016.01.025.   DOI
50 Youzera, H., Meftah, S.A. and Daya, E.M. (2017), "Superharmonic resonance of cross-ply laminates by the method of multiple scales", Comput. Nonlin. Dyn., 12, 0545031. https://doi.org/10.1115/1.4036914   DOI
51 Maurizio, A. (2014), Mechanics of Masonry Structures, Springer Wien Heidelberg New York Dordrecht London.
52 Youzera, H., Meftah, S.A., Challamel, N. and Tounsi, A. (2012), "Nonlinear damping and forced vibration analysis of laminated composite beams", Compos. Part B: Eng., 43(3), 1147-1154. https://doi.org/10.1016/j.compositesb.2012.01.008.   DOI
53 Zhen, W. and Wanji, C. (2008), "An assessment of several displacement-based theories for the vibration and stability analysis of laminated composite and sandwich beams", Compos. Struct., 84, 337-349. https://doi.org/10.1016/j.compstruct.2007.10.005.   DOI
54 Zucchini, A. and Lourenco, P.B. (2002), "A micro-mechanical model for the homogenisation of masonry", Int. J. Solid. Struct, 39, 3233-3255. https://doi.org/10.1016/S0020-7683(02)00230-5.   DOI