• Title/Summary/Keyword: composite beam-column joint

Search Result 144, Processing Time 0.023 seconds

Environmental Friendly Connection of Composite Beams and Columns (친환경 층고 절감형 합성보의 보-기둥 접합부 상세 및 시공성 연구)

  • Hong, Won-Kee;Kim, Jin-Min;Park, Seon-Chee;Lim, Sun-Jae
    • KIEAE Journal
    • /
    • v.7 no.6
    • /
    • pp.113-118
    • /
    • 2007
  • The composite beam adopted in the study was designed to reduce the floor height as well as to embed the top flange of steel frame into the slab that will enable to avoid applying the fire-resistant coating and to unify the joint method with a steel frame-type. As the steel frame and bottom concrete of the beam is pre-fabricated at the factory it could reduce the overall schedule at the jobsite. Applying such composite beam system to the work is expected to provide the efficient and enhanced performance, given the current tendency of the building construction that tends to be getting higher, larger and dense. The study focused on combining the composite beam with various column systems in a bid to propose the details thereof. A desirable composite girder can be adopted depending on site conditions through the evaluation of various beam and jointing approaches. Among the column systems applied to the study are steel column, SRC column, RC-PC column and RC column. The ways of combining with the columns addressed in the study were categorized into the rigid joint, pin joint, steel frame joint and bracket type joint. Besides, the instruction for site fabrication of beam-column was added in an effort to help set up the site fabrication procedures.

Behavior of composite CFST beam-steel column joints

  • Eom, Soon-Sub;Vu, Quang-Viet;Choi, Ji-Hun;Papazafeiropoulos, George;Kim, Seung-Eock
    • Steel and Composite Structures
    • /
    • v.32 no.5
    • /
    • pp.583-594
    • /
    • 2019
  • In recent years, composite concrete-filled steel tubular (CFST) members have been widely utilized in framed building structures like beams, columns, and beam-columns since they have significant advantages such as reducing construction time, improving the seismic performance, and possessing high ductility, strength, and energy absorbing capacity. This paper presents a new composite joint - the composite CFST beam-column joint in which the CFST member is used as the beam. The main components of the proposed composite joint are steel H-beams, CFST beams welded with the steel H-column, and a reinforced concrete slab. The steel H-beams and CFST beams are connected with the concrete slab using shear connectors to ensure composite action between them. The structural performance of the proposed composite joint was evaluated through an experimental investigation. A three-dimensional (3D) finite element (FE) model was developed to simulate this composite joint using the ABAQUS/Explicit software, and the accuracy of the FE model was verified with the relevant experimental results. In addition, a number of parametric studies were made to examine the effects of the steel box beam thickness, concrete compressive strength, steel yield strength, and reinforcement ratio in the concrete slab on the proposed joint performance.

Modelling and experiment of semi rigid joint between composite beam and square CFDST column

  • Guo, Lei;Wang, Jingfeng;Zhang, Meng
    • Steel and Composite Structures
    • /
    • v.34 no.6
    • /
    • pp.803-818
    • /
    • 2020
  • Semi-rigid connections with blind bolts could solve the difficulty that traditional high strength bolts were unavailable to splice a steel/composite beam to a closed section column. However, insufficient investigations have focused on the performance of semi-rigid connection to square concrete filled double-skin steel tubular (CFDST) columns. In this paper, a component model was developed to evaluate the mechanical behavior of semi-rigid composite connections to CFDST columns considering the stiffness and strength of column face in compression and column web in shear which were determined by the load transfer mechanism and superstition method. Then, experimental investigations on blind bolted composite joints to square CFDST columns were conducted to validate the accuracy of the component model. Dominant failure modes of the connections were analyzed and this type of joint behaved semi-rigid manner. More importantly, strain responses of CFDST column web and tubes verified that stiffness and strength of column face in compression and column web in shear significantly affected the connection mechanical behavior owing to the hollow part of the cross-section for CFDST column. The experimental and analytical results showed that the CFDST column to steel-concrete composite beam semi-rigid joints could be employed for the assembled structures in high intensity seismic regions.

An Experimental Study on Column Penetration Joint of RC Column-Steel Beam (기둥관통형 RC 기둥-철골 보 접합부에 관한 실험적 연구)

  • 김승훈;한상환;이리형
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1998.04b
    • /
    • pp.475-480
    • /
    • 1998
  • The composite framed structures, consisting of RC columns and steel beams more popular in korea because of their efficiency and quality. However the force transfer mechanisms between the column and beam may by very complicated since the materials of columns and beams are different. This study develops "the column penetration joint" which the web of steel beam doesn't penetrate and which could improve the strength, deformation, and energy dissipation capacities compared to existing composite joints. It is the concrete-filled square tube joint with the exterior diaphragms and the cruciform stiffening plates. This study evaluated the strength of RC column penetration to steel beam connection by analyzing the results of partial experiments, and reviewed the applicability the strength formula through the comparison of tested results of joint experiment.

  • PDF

Experimental behaviour of extended end-plate composite beam-to-column joints subjected to reversal of loading

  • Hu, Xiamin;Zheng, Desheng;Yang, Li
    • Structural Engineering and Mechanics
    • /
    • v.24 no.3
    • /
    • pp.307-321
    • /
    • 2006
  • This paper is concerned with the behaviour of steel and concrete composite joints subjected to reversal of loading. Three cruciform composite joint specimens and one bare steel joint specimen were tested so that one side of the beam-to-column connection was under negative moment and another side under positive moment. The steelwork beam-to-column connections were made of bolted end plate with an extended haunch section. Composite slabs employing metal decking were used for all the composite joint specimens. The moment-rotation relationships for the joints were obtained experimentally. Details of the experimental observations and results were reported.

Development of new inner diaphragms for a H-beam and composite box column joint

  • Khan, Mahbub;Uy, Brian;Kim, Jin W
    • Steel and Composite Structures
    • /
    • v.42 no.3
    • /
    • pp.363-373
    • /
    • 2022
  • This paper presents an experimental and a numerical investigation of a H-beam - composite box column joint fabricated with two new inner diaphragms and a continuous inner diaphragm. The main objective of the current research project is to investigate the structural performance of the newly developed inner diaphragms under a cyclic loading protocol. Hysteretic behaviour of the composite joints is analysed to investigate the structural performance of the new and continuous inner diaphragms. This paper compares the result of the finite element (FE) models with the new and continuous inner diaphragms against their counterpart experimental results. To produce a design criterion for the newly developed inner diaphragms, yielding or failure area of the inner diaphragms under tensile stress is analysed from the FE results.

Progressive collapse analysis of stainless steel composite frames with beam-to-column endplate connections

  • Wang, Jia;Uy, Brian;Li, Dongxu;Song, Yuchen
    • Steel and Composite Structures
    • /
    • v.36 no.4
    • /
    • pp.427-446
    • /
    • 2020
  • This paper carries out the progressive collapse analysis of stainless steel composite beam-to-column joint sub-models and moment-resisting frames under column removal scenarios. The static flexural response of composite joint sub-models with damaged columns was initially explored via finite element methods, which was validated by independent experimental results and discussed in terms of moment-rotation relationships, plastic hinge behaviour and catenary actions. Simplified finite element methods were then proposed and applied to the frame analysis which aimed to elaborate the progressive collapse response at the frame level. Nonlinear static and dynamic analysis were employed to evaluate the dynamic increase factor (DIF) for stainless steel composite frames. The results suggest that the catenary action effect plays an important role in preventing the damaged structure from dramatic collapse. The beam-to-column joints could be critical components that influence the capacity of composite frames and dominate the determination of dynamic increase factor. The current design guidance is non-conservative to provide proper DIF for stainless steel composite frames, and thus new DIF curves are expected to be proposed.

Experimental study on simplified steel reinforced concrete beam-column joints in construction technology

  • Teraoka, Masaru;Morita, Koji;Sasaki, Satoshi;Katsura, Daisuke
    • Steel and Composite Structures
    • /
    • v.1 no.3
    • /
    • pp.295-312
    • /
    • 2001
  • The purpose of this paper is to propose a new type of steel reinforced concrete (SRC) beam-column joints and to examine the structural performance of the proposed joints, which simplify the construction procedure of steel fabrication, welding works, concrete casting and joint strengthening. In the proposed beam-column joints, the steel element of columns forms continuously built-in crossing of H-sections (${\Box}$), with adjacent flanges of column being connected by horizontal stiffeners in a joint at the level of the beam flanges. In addition, simplified lateral reinforcement (${\Box}$) is adopted in a joint to confine the longitudinal reinforcing bars in columns. Experimental and analytical studies have been carried out to estimate the structural performance of the proposed joints. Twelve cruciform specimens and seven SRC beam-column subassemblage specimens were prepared and tested. The following can be concluded from this study: (1) SRC subassemblages with the proposed beam-column joints show adequate seismic performances which are superior to the demand of the current code; (2) The yield and ultimate strength capacities of the beam-to-column connections can be estimated by analysis based on the yield line theory; (3) The skeleton curves and the ultimate shear capacities of the beam-column joint panel are predicted with a fair degree of accuracy by considering a simple stress transfer mechanism.

Static behavior of novel RCS through-column-type joint: Experimental and numerical study

  • Nguyen, Xuan Huy;Le, Dang Dung;Nguyen, Quang-Huy
    • Steel and Composite Structures
    • /
    • v.32 no.1
    • /
    • pp.111-126
    • /
    • 2019
  • This paper deals with experimental investigation and modeling of the static behavior of a novel RCS beam-column exterior joint. The studied joint detail is a through-column type in which an H steel profile totally embedded inside RC column is directly welded to the steel beam. The H steel profile was covered by two supplementary plates in the joint area in order to avoid the stirrups resisting shear in the joint area. Two full-scale through-column-type RCS joints were tested under static loading. The objectives of the tests were to examine the connection performance and to highlight the contribution of two supplementary plates on the shear resistance of the joint. A reliable nonlinear 3D finite element model was developed using ABAQUS software to predict the response and behavior of the studied RCS joint. An extensive parametric study was performed to investigate the influences of the stirrups, the encased profile length and supplementary plate length on the behavior of the studied RCS joint.

Experimental research on seismic behavior of novel composite RCS joints

  • Men, Jinjie;Guo, Zhifeng;Shi, Qingxuan
    • Steel and Composite Structures
    • /
    • v.19 no.1
    • /
    • pp.209-221
    • /
    • 2015
  • Results from an experimental study on the seismic response of six composite reinforced concrete column-to-steel beam interior joints are presented. The primary variable investigated is the details in the joint. For the basic specimen, the main subassemblies of the beam and column are both continuous, and the steel beam flanges extended to the joint are partly cut off. Transverse beam, steel band plates, cove plates, X shape reinforcement bars and end plates are used in the other five specimens, respectively. After the joint steel panel yielded, two failure modes were observed during the test: local failure in Specimens 1, 2 and 4, shear failure in Specimens 3, 5 and 6. Specimens 6, 3, 5 and 4 have a better strength and deformation capacity than the other two specimens for the effectiveness of their subassemblies. For Specimens 2 and 4, though the performance of strength degradation and stiffness degradation are not as good as the other four specimens, they all have excellent energy dissipation capacity comparing to the RC joint, or the Steel Reinforced Concrete (SRC) joint. Based on the test result, some suggestions are presented for the design of composite RCS joint.