• Title/Summary/Keyword: composite Hurwitz series ring

Search Result 3, Processing Time 0.017 seconds

COMPOSITE HURWITZ RINGS AS ARCHIMEDEAN RINGS

  • Lim, Jung Wook
    • East Asian mathematical journal
    • /
    • v.33 no.3
    • /
    • pp.317-322
    • /
    • 2017
  • Let $D{\subseteq}E$ be an extension of integral domains with characteristic zero, I be a nonzero proper ideal of D, and let H(D, E) and H(D, I) (resp., h(D, E) and h(D, I)) be composite Hurwitz series rings (resp., composite Hurwitz polynomial rings). In this article, we show that H(D, E) is an Archimedean ring if and only if h(D, E) is an Archimedean ring, if and only if ${\bigcap}_{n{\geq}1}d^nE=(0)$ for each nonzero nonunit d in D. We also prove that H(D, I) is an Archimedean ring if and only if h(D, I) is an Archimedean ring, if and only if D is an Archimedean ring.

Composite Hurwitz Rings Satisfying the Ascending Chain Condition on Principal Ideals

  • Lim, Jung Wook;Oh, Dong Yeol
    • Kyungpook Mathematical Journal
    • /
    • v.56 no.4
    • /
    • pp.1115-1123
    • /
    • 2016
  • Let $D{\subseteq}E$ be an extension of integral domains with characteristic zero, I be a nonzero proper ideal of D and let H(D, E) and H(D, I) (resp., h(D, E) and h(D, I)) be composite Hurwitz series rings (resp., composite Hurwitz polynomial rings). In this paper, we show that H(D, E) satisfies the ascending chain condition on principal ideals if and only if h(D, E) satisfies the ascending chain condition on principal ideals, if and only if ${\bigcap}_{n{\geq}1}a_1{\cdots}a_nE=(0)$ for each infinite sequence $(a_n)_{n{\geq}1}$ consisting of nonzero nonunits of We also prove that H(D, I) satisfies the ascending chain condition on principal ideals if and only if h(D, I) satisfies the ascending chain condition on principal ideals, if and only if D satisfies the ascending chain condition on principal ideals.