• Title/Summary/Keyword: component modeling

Search Result 1,051, Processing Time 0.039 seconds

Measurement and Modeling of Vegetation Loss in the Frequency Range of 1 $\sim$ 6 (1 $\sim$ 6 GHz대역 수풀손실 특성 측정 및 모델링)

  • Park, Yong-Ho;Jung, Myoung-Won;Han, Il-Tak;Pack, Jeong-Ki
    • Proceedings of the Korea Electromagnetic Engineering Society Conference
    • /
    • 2005.11a
    • /
    • pp.163-168
    • /
    • 2005
  • Attenuation in vegetation is important, for both terrestrial and earth-space systems. However, the wide range of conditions and types of foliage makes it difficult to develop a generalized prediction procedure. Currently, there is also a lack of suitably prediction model and measured experimental data for vegetation loss. So in this paper, vegetation loss data for four different tree-species, including Dawn-redwood tree, Plane tree, Pine tree and Fir tree are obtained by measurement in the frequency range of 1.0 $\sim$ 6.0 GHz. The through or scattered component is calculated using a model based upon the theory of RET(Radiative Energy Transfer) and RET modeling parameters are extracted from the measured data.

  • PDF

Analysis of the Temperature Distribution at Micromachining Processes for Microaccelerometer Based on Tunneling Current Effect (턴널전류 효과를 이용한 미소가속도계의 마이크로머시닝 공정에서 온도분포 해석)

  • 김옥삼
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.9 no.5
    • /
    • pp.105-111
    • /
    • 2000
  • Micronization of sensor is a trend of the silicon sensor development with regard to a piezoresistive silicon pressure sensor, the size of the pressure sensor diaphragm have become smaller year by year, and a microaccelerometer with a size less than 200~300${\mu}{\textrm}{m}$ has been realized. Over the past four or five years, numerical modeling of microsensors and microstructures has gradually been developed as a field of microelectromechanical system(MEMS) design process. In this paper, we study some of the micromachining processes of single crystal silicon(SCS) for the microaccelerometer, and their subsequent processes which might affect thermal and mechanical loads. The finite element method(FEM) has been a standard numerical modeling technique extensively utilized in structural engineering discipline for component design of microaccelerometer. Temperature rise sufficiently low at the suspended beams. Instead, larger temperature gradient can be seen at the bottom of paddle part. The center of paddle part becomes about 5~2$0^{\circ}C$ higher than the corner of paddle and suspended beam edges.

  • PDF

A Study on the Implementation of Optimized Dechucking System (최적 dechucking 시스템 구현에 관한 연구)

  • Seo, Jong-Wan;Suh, Hee-Seok;Shin, Myong-Chul
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.21 no.5
    • /
    • pp.106-111
    • /
    • 2007
  • After the semiconductor processing, wafer is attracted by ESC(Electrostatic Chuck) with remaining electric charge. That causes too many problems for examples, sliding of wafer, popping or broken. This paper presents the model of ESC for silicon wafer, which is modeled by electrical circuit component such as capacitor. The simulations using PSpice result in the phenomenon of silicon wafer was charged by ESC. In this paper we suggest the discharging method. for wafer.

A Study on Factor Analytical Methods and Procedures for PLS-SEM (Partial Least Squares Structural Equation Modeling)

  • YIM, Myung-Seong
    • The Journal of Industrial Distribution & Business
    • /
    • v.10 no.5
    • /
    • pp.7-20
    • /
    • 2019
  • Purpose - This study provides appropriate procedures for EFA to help researchers conduct empirical studies by using PLS-SEM. Research design, data, and methodology - This study addresses the absolute and relative sample size criteria, sampling adequacy, factor extraction models, factor rotation methods, the criterion for the number of factors to retain, interpretation of results, and reporting information. Results - The factor analysis procedure for PLS-SEM consists of the following five stages. First, it is important to look at whether both the Bartlett test of sphericity and the KMO MSA meet the qualitative criteria. Second, PAF is a better choice of methodology. Third, an oblique technique is a suitable method for PLS-SEM. Fourth, a combined approach is strongly recommended to factor retention. PA should be used at the onset. Next, it is recommended using the K1 criterion. In addition, it is necessary to extract factors that increase the total variance explanatory power through the PVA-FS. Finally, it is appropriate to select an item with a factor loading into 0.5 or higher and a communality of 0.5. Conclusions - It is expected that the accurate factor analysis processed for PLS-SEM as previously presented will help us extract more precise factors of the structural model.

Data-driven modeling of the anaerobic wastewater treatment plant using robust adaptive dynamic PLS method

  • Lee Hae Woo;Lee Min Woo;Joung Jea Youl;Park Jong Moon
    • 한국생물공학회:학술대회논문집
    • /
    • 2004.07a
    • /
    • pp.47-84
    • /
    • 2004
  • Principal Component Analysis나 Partial Least Squares와 같은 다변량 통계 기법은 변수간의 correlation structure로부터 공정의 variance를 설명할 수 있는 latent variable를 얻고 이를 이용하여 공정을 효과적으로 modeling할 수 있는 방법으로 최근 들어 많은 관심을 얻고 있다. 하지만 PLS는 공정이 stationary state에 있다고 가정하기 때문에, 생물학적 공정의 non-stationary and time-varying behavior를 설명하기에 부적절하다. 본 논문에서는 PLS 알고리즘의 혐기성 폐수처리 공정에의 적용에 있어, 이와 같은 문제를 해결하기 위해서 adaptive PLS 알고리즘을 사용함으로써 변화하는 공정의 특성에 대응하여 모델을 update하는 방법을 이용하였다. 하지만 실시간 데이터로부터 adaptive PLS 방법을 적용하는 데에는 많은 어려움이 존재하며, 특히 outlier나 abnormal disturbance에 모델이 부적절하게 adaptation하는 문제가 발생할 수 있다. 따라서 이의 해결을 위해 adaptive PLS를 적용하는데 있어 robustness를 향상시키기 위해 monitoring index를 이용하여 abnormal data에 weight를 주고 안정적인 모델의 update가 가능하게 하는 방법을 제안하였으며, 이를 적용하여 성공적으로 혐기성 폐수처리 공정의 Output을 예측하고 효과적으로 공정을 모니터링할 수 있었다. 만들어진 PLS 모델은 산업폐수를 처리하기 위한 industrial plan에서 측정된 실제 데이터에 적용하여 그 효용성을 입증하였으며, 그 결과는 mechanistic model을 적용하기 힘든 실공정에 비교적 쉽게 implementation할 수 있는 장점이 있다.

  • PDF

Transient Simulator for the Turbopump Pressurized Liquid Rocket-Engine System (터보펌프 가압형 액체 추진제 로켓엔진의 천이성능 예측 모델)

  • Ko, Tae-Ho;Kim, Sang-Min;Yang, Hee-Sung;Yoon, Woong-Sup
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2007.11a
    • /
    • pp.35-38
    • /
    • 2007
  • Aiming at time-dependent performance prediction of Liquid Rocket Engine(LRE) system, Modular Program for Conceptual Design of LRE is reviewed, and a modeling and dynamic analysis of rocket engine system with reference to Rocket Engine Dynamic Simulator(REDS) is outlined. Component modeling is based on classical thermodynamic and inviscid theories, and were formulated mathematically in terms of essential parameters. Essential design parameters are addressed. The rocket engine is modeled as a system of pipes with various hydraulic elements, and then the operate characteristic of that elements are simulated by solving conservation equation sequentially.

  • PDF

Modeling of Liquid Rocket Engine Components Dynamics at Transient Operation (액체로켓엔진 천이작동 예측을 위한 구성품 동특성 모델링)

  • Kim, Hyung-Min;Lee, Kuk-Jin;Yoon, Woong-Sup
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.15 no.1
    • /
    • pp.35-44
    • /
    • 2011
  • Mathematical modelling for liquid rocket engine(LRE) main components were conducted to predict the dynamic characteristics when the LRE operates at the transient condition, which include engine start up, shut down, or thrust control. Propellant feeding system is composed of fuel and oxidizer feeding components except for regenerative cooling channel for the fuel circuit. Components modeling of pump, pipe, orifice, control valve, regenerative cooling channel and injector was serially made. Hydraulic tests of scale down component were made in order to validate modelling components. The mathematical models of engine components were integrated into LRE transient simulation program in concomitant with experimental validation.

Development of a Fully-Coupled, All States, All Hazards Level 2 PSA at Leibstadt Nuclear Power Plant

  • Zvoncek, Pavol;Nusbaumer, Olivier;Torri, Alfred
    • Nuclear Engineering and Technology
    • /
    • v.49 no.2
    • /
    • pp.426-433
    • /
    • 2017
  • This paper describes the development process, the innovative techniques used and insights gained from the latest integrated, full scope, multistate Level 2 PSA analysis conducted at the Leibstadt Nuclear Power Plant (KKL), Switzerland. KKL is a modern single-unit General Electric Boiling Water Reactor (BWR/6) with Mark III Containment, and a power output of $3600MW_{th}/1200MW_e$, the highest among the five operating reactors in Switzerland. A Level 2 Probabilistic Safety Assessment (PSA) analyses accident phenomena in nuclear power plants, identifies ways in which radioactive releases from plants can occur and estimates release pathways, magnitude and frequency. This paper attempts to give an overview of the advanced modeling techniques that have been developed and implemented for the recent KKL Level 2 PSA update, with the aim of systematizing the analysis and modeling processes, as well as complying with the relatively prescriptive Swiss requirements for PSA. The analysis provides significant insights into the absolute and relative importances of risk contributors and accident prevention and mitigation measures. Thanks to several newly developed techniques and an integrated approach, the KKL Level 2 PSA report exhibits a high degree of reviewability and maintainability, and transparently highlights the most important risk contributors to Large Early Release Frequency (LERF) with respect to initiating events, components, operator actions or seismic component failure probabilities (fragilities).

Fixed speed wind power generation system modeling and transient state stabilization method using PSCAD/EMTDC (PSCAD/EMTDC를 이용한 고정속 풍력발전시스템 모델링 및 과도상태 안정화기법)

  • Kim, Young-Ju;Park, Dae-Jin;Ali, Mohd Hasan;Park, Min-Won;Yu, In-Keun
    • Proceedings of the KIEE Conference
    • /
    • 2008.07a
    • /
    • pp.1178-1179
    • /
    • 2008
  • This paper describes a modeling of fixed speed wind power generation system which comprise of wind turbine, generator and grid. The wind turbine is based on MOD-2, which is IEEE standard wind turbine, and includes a component using wind turbine characteristic equation. Fixed speed induction generator is directly connected to grid, so the variation of wind speed has effects on the electrical torque and electrical output power. Therefore the power control mode pitch control system is necessary for aerodynamic control of the blades. But the power control mode does not operate at the fault condition. So it is required some methods to control the rotor speed at transient state for stabilization of wind power system. In this paper, simulation model of a fixed speed wind power generation system based on the PSCAD/EMTDC is presented and implemented under the real weather conditions. Also, a new pitch control system is proposed to stabilize the wind power system at the fault condition. The validity of the stabilization method is demonstrated with the results produced through sets of simulation.

  • PDF

Multi-level Modeling and Simulation of Electrical Vehicles (전기자동차의 다중레벨 모델링과 시뮬레이션)

  • Oh, Yong-Taek;van Duijsen, P.J.
    • The Journal of Korean Institute for Practical Engineering Education
    • /
    • v.4 no.2
    • /
    • pp.129-135
    • /
    • 2012
  • There are many ways in which electric vehicles are mathematically modeled and simulated. The components have different physical background and models, but have to fit into one mathematical model. A multiphysics model structure is required. Depending on the goal of the simulation, there are various levels on which the simulation can be performed. This is called multilevel, consisting of a conceptual system level, a circuit level and a more detailed component level. This paper discusses which multiphysics models and multilevel simulations are required for the various components in an electric vehicle. Also, this simulation approach could improve the effectiveness of learning in engineering education.

  • PDF