• Title/Summary/Keyword: component coupling

Search Result 256, Processing Time 0.029 seconds

A Study on the Design of Index Table Drive of Rotary Transfer Machines to Reduce Cycle Time (사이클 타임 단축을 위한 로터리 트랜스퍼 머신의 인덱스 테이블 구동부 설계에 관한 연구)

  • Huh, Ki-Seok;Park, Yong-Woo;Kim, Dong-Seon;Lyu, Sung-Ki
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.21 no.8
    • /
    • pp.60-65
    • /
    • 2022
  • This study focuses on the driving control design of an index, which is a key component of a rotary transfer machine that is effective in improving productivity and reducing manufacturing costs by shortening cycle time. Although various index studies have been conducted on the rotation of workpieces such as general-purpose machine tools and tilting indices, the development of an index for rotary transfer machines for transfer is insufficient. The index consists of a body, table, hydraulic cylinder, motor, reducer, and curved coupling. The torque of the table for driving was selected, and the angular velocity and torque pattern were simulated using the motor manufacturer's program. The specifications of the drive motor were determined based on the selected torque.

Numerical studies of unsteady flow field and aerodynamic forces on an oscillating 5:1 rectangular cylinder in a sinusoidal streamwise flow

  • Ma, Ruwei;Zhou, Qiang;Wang, Peiyuan;Yang, Yang;Li, Mingshui
    • Wind and Structures
    • /
    • v.34 no.1
    • /
    • pp.91-100
    • /
    • 2022
  • Numerical simulations are conducted to investigate the uniform flow (UF) and sinusoidal streamwise flow (SSF) over an oscillating 5:1 rectangular cylinder with harmonic heaving motion at initial angles of attack of α = 0° and 3° using two-dimensional, unsteady Reynolds-averaged Navier-Stokes (URANS) equations. First, the aerodynamic parameters of a stationary 5:1 rectangular cylinder in UF are compared with the previous experimental and numerical data to validate the capability of the computationally efficient two-dimensional URANS simulations. Then, the unsteady flow field and aerodynamic forces of the oscillating 5:1 rectangular cylinder in SSF are analysed and compared with those in UF to explore the effect of SSF on the rectangular cylinder. Results show that the alternative vortex shedding is disturbed by SSF both at α = 0° and 3°, resulting in a considerable decrease in the vortex-induced force, whereas the unsteady lift component induced by cylinder motion remains almost unchanged in the SSF comparing with that in UF. Notably, the strong buffeting forces are observed at α = 3° and the energy associated with unsteady lift is primarily because of the oscillations of SSF. In addition, the components of unsteady lift induced by the coupling effects of SSF and cylinder motion are discussed in detail.

Research on vibration control of a transmission tower-line system using SMA-BTMD subjected to wind load

  • Tian, Li;Luo, Jingyu;Zhou, Mengyao;Bi, Wenzhe;Liu, Yuping
    • Structural Engineering and Mechanics
    • /
    • v.82 no.5
    • /
    • pp.571-585
    • /
    • 2022
  • As a vital component of power grids, long-span transmission tower-line systems are vulnerable to wind load excitation due to their high flexibility and low structural damping. Therefore, it is essential to reduce wind-induced responses of tower-line coupling systems to ensure their safe and reliable operation. To this end, a shape memory alloy-bidirectional tuned mass damper (SMA-BTMD) is proposed in this study to reduce wind-induced vibrations of long-span transmission tower-line systems. A 1220 m Songhua River long-span transmission system is selected as the primary structure and modeled using ANSYS software. The vibration suppression performance of an optimized SMA-BTMD attached to the transmission tower is evaluated and compared with the effects of a conventional bidirectional tuned mass damper. Furthermore, the impacts of frequency ratios and SMA composition on the vibration reduction performance of the SMA-BTMD are evaluated. The results show that the SMA-BTMD provides superior vibration control of the long-span transmission tower-line system. In addition, changes in frequency ratios and SMA composition have a substantial impact on the vibration suppression effects of the SMA-BTMD. This research can provide a reference for the practical engineering application of the SMA-BTMD developed in this study.

The Construction of GIS-based Flood Risk Area Layer Considering River Bight (하천 만곡부를 고려한 GIS 기반 침수지역 레이어 구축)

  • Lee, Geun-Sang;Yu, Byeong-Hyeok;Park, Jin-Hyeog;Lee, Eul-Rae
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.12 no.1
    • /
    • pp.1-11
    • /
    • 2009
  • Rapid visualization of flood area of downstream according to the dam effluent in flood season is very important in dam management works. Overlay zone of river bight should be removed to represent flood area efficiently based on flood stage which was modeled in river channels. This study applied drainage enforcement algorithm to visualize flood area considering river bight by coupling Coordinate Operation System for Flood control In Multi-reservoir (COSFIM) and Flood Wave routing model (FLDWAV). The drainage enforcement algorithm is a kind of interpolation which gives to advantage into hydrological process studies by removing spurious sinks of terrain in automatic drainage algorithm. This study presented mapping technique of flood area layer considering river bight in Namgang-Dam downstream, and developed system based on Arcobject component to execute this process automatically. Automatic extraction system of flood area layer could save time-consuming efficiently in flood inundation visualization work which was propelled based on large volume data. Also, flood area layer by coupling with IKONOS satellite image presented real information in flood disaster works.

  • PDF

Implementation of Role-based Command Hierarchy Model for Actor Cooperation (ROCH: 워게임 모의개체 간 역할기반 협력 구현 방안 연구)

  • Kim, Jungyoon;Kim, Hee-Soo;Lee, Sangjin
    • Journal of the Korea Society for Simulation
    • /
    • v.24 no.4
    • /
    • pp.107-118
    • /
    • 2015
  • Many approaches to agent collaboration have been introduced in military war-games, and those approaches address methods for simulation entity (actor) collaboration within a team to achieve given goals. To meet fast-changing battlefield situations, an actor must be loosely coupled with their tasks and be able to take over the role of other actors if necessary to reflect role handovers occurring in real combat. Achieving these requirements allows the transfer of tasks assigned one actor to another actor in circumstances when that actor cannot execute its assigned role, such as when destroyed in action. Tight coupling between an actor and its tasks can prevent role handover in fast-changing situations. Unfortunately, existing approaches and war-game strictly assign tasks to actors during design, therefore they prevent the loose coupling. To overcome these shortcomings, our Role-based Command Hierarchy (ROCH) model dynamically assigns roles to actors based on their situation at runtime. In the model, "Role" separates actors from their tasks. In this paper, we implement the ROCH model as a component that uses a publish-subscribe pattern to handle the link between an actor and the roles of its subordinates (other actors).

A Development of Method for Surface and Subsurface Runoff Analysis in Urban Composite Watershed (I) - Theory and Development of Module - (대도시 복합유역의 지표 및 지표하 유출해석기법 개발 (I)- 이론 및 모듈의 개발 -)

  • Kwak, Chang-Jae;Lee, Jae-Joon
    • Journal of Korea Water Resources Association
    • /
    • v.45 no.1
    • /
    • pp.39-52
    • /
    • 2012
  • Surface-subsurface interactions are an intrinsic component of the hydrologic response within a watershed. In general, these interactions are considered to be one of the most difficult areas of the discipline, particularly for the modeler who intends simulate the dynamic relations between these two major domains of the hydrological cycle. In essence, one major complexity is the spatial and temporal variations in the dynamically interacting system behavior. The proper simulation of these variations requires the need for providing an appropriate coupling mechanism between the surface and subsurface components of the system. In this study, an approach for modelling surface-subsurface flow and transport in a fully intergrated way is presented. The model uses the 2-dimensional diffusion wave equation for sheet surface water flow, and the Boussinesq equation with the Darcy's law and Dupuit-Forchheimer's assumption for variably saturated subsurface water flow. The coupled system of equations governing surface and subsurface flows is discretized using the finite volume method with central differencing in space and the Crank-Nicolson method in time. The interactions between surface and subsurface flows are considered mass balance based on the continuity conditions of pressure head and exchange flux. The major module consists of four sub-module (SUBFA, SFA, IA and NS module) is developed.

Design of Partial Discharge Pattern Classifier of Softmax Neural Networks Based on K-means Clustering : Comparative Studies and Analysis of Classifier Architecture (K-means 클러스터링 기반 소프트맥스 신경회로망 부분방전 패턴분류의 설계 : 분류기 구조의 비교연구 및 해석)

  • Jeong, Byeong-Jin;Oh, Sung-Kwun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.67 no.1
    • /
    • pp.114-123
    • /
    • 2018
  • This paper concerns a design and learning method of softmax function neural networks based on K-means clustering. The partial discharge data Information is preliminarily processed through simulation using an Epoxy Mica Coupling sensor and an internal Phase Resolved Partial Discharge Analysis algorithm. The obtained information is processed according to the characteristics of the pattern using a Motor Insulation Monitoring System program. At this time, the processed data are total 4 types that void discharge, corona discharge, surface discharge and slot discharge. The partial discharge data with high dimensional input variables are secondarily processed by principal component analysis method and reduced with keeping the characteristics of pattern as low dimensional input variables. And therefore, the pattern classifier processing speed exhibits improved effects. In addition, in the process of extracting the partial discharge data through the MIMS program, the magnitude of amplitude is divided into the maximum value and the average value, and two pattern characteristics are set and compared and analyzed. In the first half of the proposed partial discharge pattern classifier, the input and hidden layers are classified by using the K-means clustering method and the output of the hidden layer is obtained. In the latter part, the cross entropy error function is used for parameter learning between the hidden layer and the output layer. The final output layer is output as a normalized probability value between 0 and 1 using the softmax function. The advantage of using the softmax function is that it allows access and application of multiple class problems and stochastic interpretation. First of all, there is an advantage that one output value affects the remaining output value and its accompanying learning is accelerated. Also, to solve the overfitting problem, L2-normalization is applied. To prove the superiority of the proposed pattern classifier, we compare and analyze the classification rate with conventional radial basis function neural networks.

Splitting of Surface Plasmon Resonance Peaks Under TE- and TM-polarized Illumination

  • Yoon, Su-Jin;Hwang, Jeongwoo;Lee, Myeong-Ju;Kang, Sang-Woo;Kim, Jong-Su;Ku, Zahyun;Urbas, Augustine;Lee, Sang Jun
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.296-296
    • /
    • 2014
  • We investigate experimentally and theoretically the splitting of surface plasmon (SP) resonance peaks under TE- and TM-polarized illumination. The SP structure at infrared wavelength is fabricated with a 2-dimensional square periodic array of circular holes penetrating through Au (gold) film. In brief, the processing steps to fabricate the SP structure are as follows. (i) A standard optical lithography was performed to produce to a periodic array of photoresist (PR) circular cylinders. (ii) After the PR pattern, e-beam evaporation was used to deposit a 50-nm thick layer of Au. (iii) A lift-off processing with acetone to remove the PR layer, leading to final structure (pitch, $p=2.2{\mu}m$; aperture size, $d=1.1{\mu}m$) as shown in Fig. 1(a). The transmission is measured using a Nicolet Fourier-transform infrared spectroscopy (FTIR) at the incident angle from $0^{\circ}$ to $36^{\circ}$ with a step of $4^{\circ}$ both in TE and TM polarization. Measured first and second order SP resonances at interface between Au and GaAs exhibit the splitting into two branches under TM-polarized light as shown in Fig. 1(b). However, as the incidence angle under TE polarization is increased, the $1^{st}$ order SP resonance peak blue-shifts slightly while the splitting of $2^{nd}$ order SP resonance peak tends to be larger (not shown here). For the purpose of understanding our experimental results qualitatively, SP resonance peak wavelengths can be calculated from momentum matching condition (black circle depicted in Fig. 2(b)), $k_{sp}=k_{\parallel}{\pm}iG_x{\pm}jG_y$, where $k_{sp}$ is the SP wavevector, $k_{\parallel}$ is the in-plane component of incident light wavevector, i and j are SP coupling order, and G is the grating momentum wavevector. Moreover, for better understanding we performed 3D full field electromagnetic simulations of SP structure using a finite integration technique (CST Microwave Studio). Fig. 1(b) shows an excellent agreement between the experimental, calculated and CST-simulated splitting of SP resonance peaks with various incidence angles under TM-polarized illumination (TE results are not shown here). The simulated z-component electric field (Ez) distribution at incident angle, $4^{\circ}$ and $16^{\circ}$ under TM polarization and at the corresponding SP resonance wavelength is shown in Fig. 1(c). The analysis and comparison of theoretical results with experiment indicates a good agreement of the splitting behavior of the surface plasmon resonance modes at oblique incidence both in TE and TM polarization.

  • PDF

Service Identification of Component-Based System for Service-Oriented Architecture (서비스 지향 아키텍처를 위한 컴포넌트기반 시스템의 서비스 식별)

  • Lee, Hyeon-Joo;Choi, Byoung-Ju;Lee, Jung-Won
    • Journal of KIISE:Software and Applications
    • /
    • v.35 no.2
    • /
    • pp.70-80
    • /
    • 2008
  • Today, businesses have to respond with flexibility and speed to ever-changing customer demand and market opportunities. Service-oriented architecture (SOA) is the best methodology for minimizing the complexity and the cost of enterprise-level infrastructure and for maximizing the productivity and the flexibility of an enterprise. Most of the enterprise-level SOA delivery strategies deal with the top-down approach, which organization has to define the business processes, to model business services, and to find the required services or to develop new services. However, a lot of peoples want to maximally reuse legacy component-based systems as well as to deliver SOA into their organizations. In this paper, we propose a bottom-up approach for identifying business services with proper granularity. It can improve the reusability and maintenance of services by considering not data I/O of components of legacy applications but GUI event patterns. Our proposed method is applied to MIS with 129 GUIs and 13 components. As a result, the valiance of the coupling value of components is increased five times and three business services are distinctly exposed. It also provides a 49% improvement in reducing the relationship problems between services over a service identification method using only partitioning information of components.

Bio-Derived Poly(${\gamma}$-Glutamic Acid) Nanogels as Controlled Anticancer Drug Delivery Carriers

  • Bae, Hee Ho;Cho, Mi Young;Hong, Ji Hyeon;Poo, Haryoung;Sung, Moon-Hee;Lim, Yong Taik
    • Journal of Microbiology and Biotechnology
    • /
    • v.22 no.12
    • /
    • pp.1782-1789
    • /
    • 2012
  • We have developed a novel type of polymer nanogel loaded with anticancer drug based on bio-derived poly(${\gamma}$-glutamic acid) (${\gamma}$-PGA). ${\gamma}$-PGA is a highly anionic polymer that is synthesized naturally by microbial species, most prominently in various bacilli, and has been shown to have excellent biocompatibility. Thiolated ${\gamma}$-PGA was synthesized by covalent coupling between the carboxyl groups of ${\gamma}$-PGA and the primary amine group of cysteamine. Doxorubicin (Dox)-loaded ${\gamma}$-PGA nanogels were fabricated using the following steps: (1) an ionic nanocomplex was formed between thiolated ${\gamma}$-PGA as the negative charge component, and Dox as the positive charge component; (2) addition of poly(ethylene glycol) (PEG) induced hydrogen-bond interactions between thiol groups of thiolated ${\gamma}$-PGA and hydroxyl groups of PEG, resulting in the nanocomplex; and (3) disulfide crosslinked ${\gamma}$-PGA nanogels were fabricated by ultrasonication. The average size and surface charge of Dox-loaded disulfide cross-linked ${\gamma}$-PGA nanogels in aqueous solution were $136.3{\pm}37.6$ nm and $-32.5{\pm}5.3$ mV, respectively. The loading amount of Dox was approximately 38.7 ${\mu}g$ per mg of ${\gamma}$-PGA nanogel. The Dox-loaded disulfide cross-linked ${\gamma}$-PGA nanogels showed controlled drug release behavior in the presence of reducing agents, glutathione (GSH) (1-10 mM). Through fluorescence microscopy and FACS, the cellular uptake of ${\gamma}$-PGA nanogels into breast cancer cells (MCF-7) was analyzed. The cytotoxic effect was evaluated using the MTT assay and was determined to be dependent on both the concentration and treatment time of ${\gamma}$-PGA nanogels. The bio-derived ${\gamma}$-PGA nanogels are expected to be a well-designed delivery carrier for controlled drug delivery applications.