• Title/Summary/Keyword: component classification

Search Result 821, Processing Time 0.039 seconds

NEW CLASSIFICATION TECHNIQUES FOR POLARIMETRIC SAR IMAGES AND ASSOCIATED THREE-COMPONENT DECOMPOSITION TECHNIQUE

  • Oh, Yi-Sok;Chang, Geba;Lee, Kyung-Yup
    • Proceedings of the KSRS Conference
    • /
    • 2008.10a
    • /
    • pp.29-32
    • /
    • 2008
  • In this paper, we propose one unsupervised classification technique using the degree of polarization (DoP) and the co-polarized phase-difference (CPD) statistics, instead of the entropy and alpha. It is shown that the DoP is closely related to the entropy, and the CPD to the alpha. The DoP explains the feature how much the effect of multiple reflections is contained. Hence, the DoP could be used as an important factor for classifying classes. The CPD can also be computed from the measured Mueller matrix elements. For the smooth surface scattering, the CPD is about $0^{\circ}$, and for dihedral-type scattering, the CPD is about $180^{\circ}$. A DoP-CPD diagram with appropriate boundaries between six different classes is developed based on the SAR image. The classification results are compared with the existing Entropy-alpha diagram as well as the IPL-AirSAR polarimetric data. The technique may have capability to classify an SAR image into six major classes; a bare surface, a village, a crown-layer short vegetation canopy, a trunk-layer short vegetation canopy, a crown-layer forest, and a trunk-dominated forest. Based on the DoP and CPD analysis, a simple three-component decomposition technique was also proposed.

  • PDF

Nonlinear Interaction between Consonant and Vowel Features in Korean Syllable Perception (한국어 단음절에서 자음과 모음 자질의 비선형적 지각)

  • Bae, Moon-Jung
    • Phonetics and Speech Sciences
    • /
    • v.1 no.4
    • /
    • pp.29-38
    • /
    • 2009
  • This study investigated the interaction between consonants and vowels in Korean syllable perception using a speeded classification task (Garner, 1978). Experiment 1 examined whether listeners analytically perceive the component phonemes in CV monosyllables when classification is based on the component phonemes (a consonant or a vowel) and observed a significant redundancy gain and a Garner interference effect. These results imply that the perception of the component phonemes in a CV syllable is not linear. Experiment 2 examined the further relation between consonants and vowels at a subphonemic level comparing classification times based on glottal features (aspiration and lax), on place of articulation features (labial and coronal), and on vowel features (front and back). Across all feature classifications, there were significant but asymmetric interference effects. Glottal feature.based classification showed the least amount of interference effect, while vowel feature.based classification showed moderate interference, and place of articulation feature-based classification showed the most interference. These results show that glottal features are more independent to vowels, but place features are more dependent to vowels in syllable perception. To examine the three-way interaction among glottal, place of articulation, and vowel features, Experiment 3 featured a modified Garner task. The outcome of this experiment indicated that glottal consonant features are independent to both the place of articulation and vowel features, but the place of articulation features are dependent to glottal and vowel features. These results were interpreted to show that speech perception is not abstract and discrete, but nonlinear, and that the perception of features corresponds to the hierarchical organization of articulatory features which is suggested in nonlinear phonology (Clements, 1991; Browman and Goldstein, 1989).

  • PDF

Functional Data Classification of Variable Stars

  • Park, Minjeong;Kim, Donghoh;Cho, Sinsup;Oh, Hee-Seok
    • Communications for Statistical Applications and Methods
    • /
    • v.20 no.4
    • /
    • pp.271-281
    • /
    • 2013
  • This paper considers a problem of classification of variable stars based on functional data analysis. For a better understanding of galaxy structure and stellar evolution, various approaches for classification of variable stars have been studied. Several features that explain the characteristics of variable stars (such as color index, amplitude, period, and Fourier coefficients) were usually used to classify variable stars. Excluding other factors but focusing only on the curve shapes of variable stars, Deb and Singh (2009) proposed a classification procedure using multivariate principal component analysis. However, this approach is limited to accommodate some features of the light curve data that are unequally spaced in the phase domain and have some functional properties. In this paper, we propose a light curve estimation method that is suitable for functional data analysis, and provide a classification procedure for variable stars that combined the features of a light curve with existing functional data analysis methods. To evaluate its practical applicability, we apply the proposed classification procedure to the data sets of variable stars from the project STellar Astrophysics and Research on Exoplanets (STARE).

Robust Feature Parameter for Implementation of Speech Recognizer Using Support Vector Machines (SVM음성인식기 구현을 위한 강인한 특징 파라메터)

  • 김창근;박정원;허강인
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.41 no.3
    • /
    • pp.195-200
    • /
    • 2004
  • In this paper we propose effective speech recognizer through two recognition experiments. In general, SVM is classification method which classify two class set by finding voluntary nonlinear boundary in vector space and possesses high classification performance under few training data number. In this paper we compare recognition performance of HMM and SVM at training data number and investigate recognition performance of each feature parameter while changing feature space of MFCC using Independent Component Analysis(ICA) and Principal Component Analysis(PCA). As a result of experiment, recognition performance of SVM is better than 1:.um under few training data number, and feature parameter by ICA showed the highest recognition performance because of superior linear classification.

A Classification Method Using Data Reduction

  • Uhm, Daiho;Jun, Sung-Hae;Lee, Seung-Joo
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.12 no.1
    • /
    • pp.1-5
    • /
    • 2012
  • Data reduction has been used widely in data mining for convenient analysis. Principal component analysis (PCA) and factor analysis (FA) methods are popular techniques. The PCA and FA reduce the number of variables to avoid the curse of dimensionality. The curse of dimensionality is to increase the computing time exponentially in proportion to the number of variables. So, many methods have been published for dimension reduction. Also, data augmentation is another approach to analyze data efficiently. Support vector machine (SVM) algorithm is a representative technique for dimension augmentation. The SVM maps original data to a feature space with high dimension to get the optimal decision plane. Both data reduction and augmentation have been used to solve diverse problems in data analysis. In this paper, we compare the strengths and weaknesses of dimension reduction and augmentation for classification and propose a classification method using data reduction for classification. We will carry out experiments for comparative studies to verify the performance of this research.

Fast classification of fibres for concrete based on multivariate statistics

  • Zarzycki, Pawel K.;Katzer, Jacek;Domski, Jacek
    • Computers and Concrete
    • /
    • v.20 no.1
    • /
    • pp.23-29
    • /
    • 2017
  • In this study engineered steel fibres used as reinforcement for concrete were characterized by number of key mechanical and spatial parameters, which are easy to measure and quantify. Such commonly used parameters as length, diameter, fibre intrinsic efficiency ratio (FIER), hook geometry, tensile strength and ductility were considered. Effective classification of various fibres was demonstrated using simple multivariate computations involving principal component analysis (PCA). Contrary to univariate data mining approach, the proposed analysis can be efficiently adapted for fast, robust and direct classification of engineered steel fibres. The results have revealed that in case of particular spatial/geometrical conditions of steel fibres investigated the FIER parameter can be efficiently replaced by a simple aspect ratio. There is also a need of finding new parameters describing properties of steel fibre more precisely.

A Classification Technique for Panchromatic Imagery Using Independent Component Analysis Feature Extraction

  • Byoun, Seung-Gun;Lee, Ho-Yong;Kim, Min;Lee, Kwae-Hi
    • Proceedings of the KSRS Conference
    • /
    • 2002.10a
    • /
    • pp.23-28
    • /
    • 2002
  • Among effective feature extraction methods from the small-patched image set, independent component analysis (ICA) is recently well known stochastic manner to find informative basis images. The ICA simultaneously learns both basis images and independent components using high order statistic manners, because that information underlying between pixels are sensitive to high-order statistic models. The topographic ICA model is adapted in our experiment. This paper deals with an unsupervised classification strategies using learned ICA basis images. The experimental result by proposed classification technique shows superior performance than classic texture analysis techniques for the panchromatic KOMPSAT imagery.

  • PDF

A Classification of Rural Area Using Principal Component Analysis and GIS (주성분 분석과 지리정보시스템을 이용한 충청북도 농촌 지역의 유형화)

  • Park, Jin-Sun;Joo, Ho-Gil;Yoon, Seong-Soo;Rhee, Shin-Ho
    • Proceedings of the Korean Society of Agricultural Engineers Conference
    • /
    • 2003.10a
    • /
    • pp.131-134
    • /
    • 2003
  • The purpose of this study is for classification to do a short distance rural area with the object to the center to Cheongju area. This study used principal component analysis and geography information system, and it was disciplined oneself. It was done a study object region to Cheongju-si, Cheongwon-gun Goesan-gun, Eumseong-gun, and we divided an index by of 22 large class and 104 small class, and the SPSS analyzed the Principal Component Analysis. We used a Geography Information System, and it was made graphical data by the results that have finished Principal Component Analysis.

  • PDF

Varietal Classification by Multivariate Analysis on Quantitative Traits in Pecan

  • Shin, Dong-Young;Nou, Ill-Sup
    • Plant Resources
    • /
    • v.2 no.2
    • /
    • pp.75-80
    • /
    • 1999
  • Twenty two varieties of pecan including wild types were classified based on 6 characters measured by principal component analysis score distance. The results are summarized as fellow. Twenty two varieties were classified into 5 groups based in PCA score distance. Five groups were distinctly characterized by many morphological characters. Total variation could be explained by 51%, 95%, 99% with first, third and fifth principal components respectively. Varimax rotation of the factor loading of the first factors indicated that the first component was highly loaded with leaf characters, the second component with fruit characters, but fruit length was negative loaded. The second, the third and the fourths groups of cultivars had very close genetic parentage similarity.

  • PDF

Adaptive sEMG Pattern Recognition Algorithm using Principal Component Analysis (주성분 분석을 활용한 적응형 근전도 패턴 인식 알고리즘)

  • Sejin Kim;Wan Kyun Chung
    • The Journal of Korea Robotics Society
    • /
    • v.19 no.3
    • /
    • pp.254-265
    • /
    • 2024
  • Pattern recognition for surface electromyogram (sEMG) suffers from its nonstationary and stochastic property. Although it can be relieved by acquiring new training data, it is not only time-consuming and burdensome process but also hard to set the standard when the data acquisition should be held. Therefore, we propose an adaptive sEMG pattern recognition algorithm using principal component analysis. The proposed algorithm finds the relationship between sEMG channels and extracts the optimal principal component. Based on the relative distance, the proposed algorithm determines whether to update the existing patterns or to register the new pattern. From the experimental result, it is shown that multiple patterns are generated from the sEMG data stream and they are highly related to the motion. Furthermore, the proposed algorithm has shown higher classification accuracy than k-nearest neighbor (k-NN) and support vector machine (SVM). We expect that the proposed algorithm is utilized for adaptive and long-lasting pattern recognition.