• Title/Summary/Keyword: complex structure

Search Result 4,562, Processing Time 0.029 seconds

Electrical Properties of G4-48PyP Dendrimer LB Films complex with Metal Ions (금속이온 착체에 의한 G4-48PyP 덴드리머 LB막의 전기적 특성)

  • Jung, S.B.;Yoo, S.Y.;Park, J.C.;Kwon, Y.S.
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.07b
    • /
    • pp.769-772
    • /
    • 2002
  • Dendrimers are well-defined macromolecules exhibiting a tree-like structure, first derived by the cascade molecule approach. Peculiar features of the dendritic geometry are the large number of end groups as well as the shape persistence in higher generations, approaching spherical geometry. And one of the most peculiar characteristics of dendritic macromolecules is their controlled molecular structure and orientation, which means that they have a practical application in achieving a highly organized molecular arrangement. We attempted to fabricate a dendrimer LB films containing 48 pyridinepropanol functional end group. As the pyridinepropanol functional group could form a complex structure with metal ions. We investigated the surface activity of dendrimer films at air-water interface compared with pure dendrimer and its complex with $Fe^{2+}$ ions into subphase. We though that metal ions are contributed to networking or branching reaction between dendrimers. And we expected that it can result in the differences on the electrical properties. We have studied the electrical properties of the ultra thin dendrimer LB films investigated by the current-voltage characteristics of metal dendrimer LB films/metal (MIM) structure.

  • PDF

Chromium(III) Complex Obtained from Dipicolinic Acid: Synthesis, Characterization, X-Ray Crystal Structure and Electrochemical Studies

  • Ghasemi, Khaled;Rezvani, Ali Reza;Razak, Ibrahim Abdul;Moghimi, Abolghasem;Ghasemi, Fatemeh;Rosli, Mohd Mustaqim
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.10
    • /
    • pp.3093-3097
    • /
    • 2013
  • The synthesis, X-ray crystallography, spectroscopic (IR, UV-vis), and electrochemical properties of the title compound, $[H_3O][Cr(dipic)_2][H_3O^+.Cl^-]$ (1), ($H_2dipic$ = 2,6-pyridinedicarboxylic acid), are reported. This complex crystallizes in the monoclinic space group Cc with a = 14.9006(10) ${\AA}$, b = 12.2114(8) ${\AA}$, c = 8.6337(6) ${\AA}$, ${\alpha}=90.00^{\circ}$, ${\beta}=92.7460(10)^{\circ}$, ${\gamma}=90.00^{\circ}$, and V = 1569.16(18) ${\AA}^3$ with Z = 4. The hydrogen bonding and noncovalent interactions play roles in the stabilization of the structure. In order to gain a better understanding of the most important geometrical parameters in the structure of the complex, atoms in molecules (AIM) method at B3LYP/6-31G level of theory has been employed.

NMR Studies of Ni-binding Luteinizing Hormone Releasing Hormone

  • Kim, Jin;Won, Ho-Shik
    • Journal of the Korean Magnetic Resonance Society
    • /
    • v.13 no.2
    • /
    • pp.143-153
    • /
    • 2009
  • Luteinizing Hormone Releasing Hormone (LHRH) is composed of 10 amino acids, and is best known as a neurotransmitter. Because of the 80% homology in animals, much more concerns have focused on the substances that have similar functions or can control LHRH. Ni, Cu-LHRH complexes were synthesized. The degree of complexation was monitored by $^1H,\;^{13}C$-NMR chemical shifts, and final products were identified by ESI-Mass spectrum. Solution-state structure determination of Ni-LHRH complex was accomplished by using NMR results and NMR-based distance geometry (DG). Interproton distances from nuclear Overhauser effect spectroscopy (NOESY) were utilized for the molecular structure determination. Results were compared with previous structures obtained from energy minimization and other spectroscopic methods. Structure obtained in this study has a cyclic conformation which is similar to that of energy minimized, and exhibits a specific a-helical turn with residue numbers (2~7) out of 10 amino acids. Comparison of chemical shifts and EPR studies of Ni, Cu-LHRH complexes exhibit that Ni-LHRH complex has same binding sites with the 4-coordination mode as in Zn-LHRH complex.

Synthesis and Structure of $\eta^4$-1-Functionally Substituted-2,3,4,5-Tetraphenyl-1-Silacyclopentadienyl Complexes of Irontricarbonyl. Crystal Structure of ($\eta^4$-exo-Cyclopentadienyldicarbonyliron-endo-1-Methyl-2,3,4,5-Tetraphenyl-1-Silacyclopentadienyl)Tricarbonyliron

  • Jinkook Kang;Jaejung Ko;Youngkun Kong;Chang Hwan Kim;Myong Euy Lee;Patrick J. Carroll
    • Bulletin of the Korean Chemical Society
    • /
    • v.13 no.5
    • /
    • pp.542-546
    • /
    • 1992
  • New silicon-monosubstituted (${\eta}^4$-2,3,4,5-tetraphenyl-1-silacyclopentadiene)transi tion metal complexes are described. The new (silole-transition metal complex)Fe$(CO)_3$ was obtained from the reaction of silole-tansition metal complex and Fe$(CO)_5$. We have determined the crystal structure of (${\eta}^4$-exo-cyclopentadienyldicarbonyliron-endo-1-meth yl-2,3,4,5-tetraphenyl-1-silacyclopentadienyl)tric arbonyliron by using graphitemonochromated Mo-$K_{\alpha}radiation. The compound was crystallized in the monoclinic space group $P2_1$/c with a = 8.925(1), b = 18.689(3), c = 19.930(3) ${\AA}$, and ${\beta}$ = 102.02$(1)^{\circ}$. The iron moiety CpFe$(CO)_2$ on silicon is in an axal position. The (silole-transition metal complex) Fe$(CO)_3$ was also prepared through the reaction of (${\eta}^4$-1-chloro-2,3,4,5-tetraphenylsilacyclopentadiene) Fe$(CO)_3$ and metal complex nucleophile. The structure configuration was studied by conventional spectroscopy.

Crystal Structure of p97 N-D1 Hexamer in Complex with p47 UBX Domain

  • Thang Quyet Nguyen;Wonchull Kang
    • Journal of the Korean Chemical Society
    • /
    • v.68 no.1
    • /
    • pp.25-31
    • /
    • 2024
  • The p97 adenosine triphosphatase is a key player in protein homeostasis, responsible for unfolding ubiquitylated substrates. It engages with various adaptor proteins through its N-terminal domain, with the p97-p47 complex attracting particular attention for its involvement in membrane remodeling. Although the structures of p97 in complex with the Ubiquitin regulatory X (UBX) domain from various adaptors have been reported, the stoichiometry is conflicting. Here, we report the crystal structure of the p97 N-D1 hexamer in complex with the p47 UBX domain at a resolution of 2.7 Å. The structure reveals a stoichiometry of 6:6 between the p97 N-D1 and the p47 UBX domain. These findings provide valuable insights into the binding stoichiometry of p97 N-D1 and p47 UBX domain, which are crucial for understanding the role of p97 and adaptor proteins in cellular processes such as the ubiquitin-proteasome pathway, membrane fusion, and cell cycle regulation.

Near-IR Polarization of the Northeastern Region of the Large Magellanic Cloud

  • Kim, Jaeyeong
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.42 no.2
    • /
    • pp.42.2-42.2
    • /
    • 2017
  • The Large Magellanic Cloud (LMC) is a unique target to study the detail structures of molecular clouds and star-forming regions, due to its proximity and face-on orientation from us. Most part of the astrophysical subjects for the LMC have been investigated, but the magnetic field is still veiling despite its role in the evolution of the interstellar medium (ISM) and in the main force to influence the star formation process. Measuring polarization of the background stars behind interstellar medium allows us to describe the existence of magnetic fields through the polarization vector map. In this presentation, I introduce the near-infrared polarimetric results for the $39^{\prime}{\times}69^{\prime}$ field of the northeastern region of the LMC and the N159/N160 star-forming complex therein. The polarimetric observations were conducted at IRSF/SIRPOL 1.4 m telescope. These results allow us to examine both the global geometry of the large-scale magnetic field in the northeastern region and the close structure of the magnetic field in the complex. Prominent patterns of polarization vectors mainly follow dust emission features in the mid-infrared bands, which imply that the large-scale magnetic fields are highly involved in the structure of the dust cloud in the LMC. In addition, local magnetic field structures in the N159/N160 star-forming complex are investigated with the comparison between polarization vectors and molecular cloud emissions, suggesting that the magnetic fields are resulted from the sequential formation history of this complex. I propose that ionizing radiation from massive stellar clusters and the expanding bubble of the ionized gas and dust in this complex probably affect the nascent magnetic field structure.

  • PDF