• Title/Summary/Keyword: complex refractive index

Search Result 56, Processing Time 0.029 seconds

Characterization of Heterogeneous Interaction Behaviour in Ternary Mixtures by Dielectric Analysis: The H-Bonded Binary Polar Mixture in Non-Polar Solvent

  • Sengwa, R.J.;Madhvi;Sankhla, Sonu;Sharma, Shobha
    • Bulletin of the Korean Chemical Society
    • /
    • v.27 no.5
    • /
    • pp.718-724
    • /
    • 2006
  • The heterogeneous association behaviour of various concentration binary mixtures of mono alkyl ethers of ethylene glycol with ethyl alcohol were investigated by dielectric measurement in benzene solutions over the entire concentration range at 25 ${^{\circ}C}$. The values of static dielectric constant $\epsilon_0$ of the mixtures were measured at 1 MHz using a four terminal dielectric liquid test fixture and precision LCR meter. The high frequency limiting dielectric constant $\epsilon_\infty$ values were determined by measurement of refractive index $n_D$ ($\epsilon_\infty\;=\;n_D\;^2$). The measured values of $\epsilon_0$ and $\epsilon_\infty$ were used to evaluate the values of excess dielectric constant $\epsilon^E$, effective Kirkwood correlation factor $g^{eff}$ and corrective correlation factor $g_f$ of the binary polar mixtures to obtain qualitative and quantitative information about the H-bond complex formation. The non-linear behaviour of the observed $\epsilon_0$ values of the polar molecules and their mixtures in benzene solvent confirms the variation in the associated structures with change in polar mixture constituents concentration and also by dilution in non-polar solvents. Appearance of the maximum in $\epsilon^E$ values at different concentration of the polar mixtures suggest the formation of stable adduct complex, which depends on the molecular size of the mono alkyl ethers of ethylene glycol. Further, the observed $\epsilon^E$ < 0 also confirms the heterogeneous H-bond complex formation reduces the effective number of dipoles in these polar binary mixtures. In benzene solutions these polar molecules shows the maximum reduce in effective number of dipoles at 50 percent dilutions. But ethyl alcohol rich binary polar mixtures in benzene solvent show the maximum reduce in effective number of dipoles in benzene rich solutions.

Multi-wavelength Raman LIDAR for Use in Determining the Microphysical, Optical, and Radiative Properties of Mixed Aerosols

  • Lee, Kwon-Ho;Noh, Young Min
    • Asian Journal of Atmospheric Environment
    • /
    • v.9 no.1
    • /
    • pp.91-99
    • /
    • 2015
  • The Multi-wavelength Raman LIDAR (MRL) system was developed to enable a better understanding of the complex properties of aerosols in the atmosphere. In this study, the microphysical, optical, and radiative properties of mixed aerosols were retrieved using the discrete aerosol observation products from the MRL. The dust mixing ratio, which is the proportion of dust particles to the total mixed, was derived using the particle depolarization ratio. It was employed in the retrieval of backscattering and extinction coefficient profiles for dust and non-dust particles. The vertical profiles of aerosol optical properties were then used as input parameters in the inversion algorithm for the retrieval of microphysical parameters including the effective radius, refractive index, and the single scattering albedo (SSA). Those products were successfully applied to an analysis of radiative flux using a radiative transfer model. The relationship between the MRL derived extinction and aerosol radiative forcing (ARF) in short-wavelength was assessed over Gwangju, Korea. The results clearly demonstrate that the MRL-derived extinction profiles are a good surrogate for use in the estimation of optical, microphysical, and radiative properties of aerosols. It is considered that the analytical results shown in this study can be used to provide a better understanding of air quality and the variation of local radiative effects due to aerosols.

OBSERV ATION OF MICRO-STRUCTURE AND OPTICAL PROPERTISE OF TITANIUM DIOXIDE THIN FILMS USING OPTICAL MMEHODS

  • Kim, S.Y.;Kim, H.J.
    • Journal of the Korean institute of surface engineering
    • /
    • v.29 no.6
    • /
    • pp.788-796
    • /
    • 1996
  • $TiO_2$ films prepared by RF magnetron sputtering, electron beam evaporation, ion assisted deposition (IAD) and sol-gel method are prepared on c-Si substrate and vitreous silica substrate respectively. From the transmission spectra of $TiO_2$ films on vitreous silica substrate in the spectral region from 190 nm to 900 nm, k($\lambda$) of $TiO_2$ is obtained. Using k($\lambda$) in the interband transition region the coefficients of the quantum mechanical dispersion relation of an amorphous $TiO_2$ and hence n($\lambda$) including the optically opaque region of above fundamental transition energy are obtained. The spectroscopic ellipsometry spectra of $TiO_2$ films in the spectral region of 1.5-5.0eV are model analyzed to get the film packing density variation versus i) substrate material, ii) film thickness and iii) film growth technique. The complex refractive index change of these $TiO_2$ films versus water condensation is also studied. Film micro-structures by SE modelling results are compared with those by atomic force microscopy images and X-ray diffraction data.

  • PDF

Holographic interferometric tomography for reconstructing a three- dimensional flow field (3차원 유동장 측정용 홀로그래피 간섭토모그래피)

  • ;S. S. Cha
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.11 no.6
    • /
    • pp.749-757
    • /
    • 1999
  • Holographic interferornetric tomography can provide reconstruction of instantaneous three dimensional gross flow fields. The technique however confronts ill-posed reconstruction problems in practical applications. Experimental data are usually limited in projection and angular scanning when a field is captured instantaneously or under the obstruction of test models and test section enclosures. An algorithm, based on a series expansion method, has been developed to improve the reconstruction under the ill-posed conditions. A three-dimensional natural convection flow around two interacting isothermal cubes is experimentally investigated. The flow can provide a challenging reconstruction problem and lend itself to accurate numerical solution for comparison. The refractive index fields at two horizontal sections of the thermal plume with and without an opaque object are reconstructed at a limited view angle of 80" The experimental reconstructions are then compared with those from numerical calculation and thermocouple thermometry. It confirms that the technique is applicable to reconstruction of reasonably complex, three-dimensional flow fields.elds.

  • PDF

Analysis of patterned ITO layer of PDP thin films using spectroscopic ellipsometry (분광타원법을 이용한 PDP용 ITO 박막의 패턴 분석)

  • 윤희삼;김상열
    • Korean Journal of Optics and Photonics
    • /
    • v.14 no.3
    • /
    • pp.272-278
    • /
    • 2003
  • We studied patterned ITO layers of PDP thin films on glass substrates using spectroscopic ellipsometry. The optical property of ITO is expressed with the optical model based on two Lorentz oscillators. The effect of patterned ITO is calculated by taking the weighted average of reflectance in proportion to ITO coverage. The relative coverage of ITO is determined by using the model analysis of spectroellipsometric data. The difference of ITO coverage obtained by the best-fit model analysis of ellipsometric spectra to the expected one is critically examined and suggestions are made to minimize the observed discrepancy.

Optical Simulation Study on Indoor Organic Photovoltaics with Textured Electrodes towards Self-powered Photodetector

  • Biswas, Swarup;Kim, Hyeok
    • Journal of Sensor Science and Technology
    • /
    • v.28 no.4
    • /
    • pp.236-239
    • /
    • 2019
  • In this work, we performed an optical simulation study on the performance of a PMDPP3T:PCBM based on an organic photovoltaic (PV) device. The virtual PV device was developed in Lumerical, finite-difference time-domain (FDTD) solutions. Different layers of the PV cell have been defined through the incorporation of complex refractive index value of those layers' constituent materials. During the simulation study, the effect of the variation active layer thickness on an ideal short circuit current density ($J_{sc,ideal}$) of the PV cell has been, first, observed. Thereafter, we have investigated the impact of surface roughness of a transparent conducting oxide (TCO) electrode on $J_{sc,ideal}$ of the PV cells. From this simulation, it has been observed that the $J_{sc,ideal}$ value of the PV cell is strongly dependent on the thickness of its active layer and the photon absorption of the PV cell has gradually decreased with the increment of the TCO's surface roughness. As a result, the capability of the PV device has been reduced with the increment of the surface roughness of the TCO.

Preparation and Characterization of BaTiO3 Powders and Thin films (티탄산바륨 분말과 박막의 제조 및 특성 연구)

  • Jung, Miewon;Son, Hyunjin;Lee, Jiyun;Kim, Hyunjung
    • Analytical Science and Technology
    • /
    • v.17 no.2
    • /
    • pp.173-179
    • /
    • 2004
  • The $BaTiO_3$ powders and thin films were prepared by an alkoxide modified sol-gel process (polymerization-complex route) using ethylene glycol. The stable starting (Ba-Ti)-mixed metal organic sol was made by addition of acetylacetone. The $BaTiO_3$ powders, which had a particle size of 40~77 nm, were crystallized from an amorphous to a tetragonal phase on annealing at 700 and $1100^{\circ}C$ for 1 h. From FT-IR, solid-state $^{13}C$ CP/MAS NMR spectroscopy and X-ray diffractometry, the trace of the Ba-Ti-oxycarbonate phase first appeared at $400^{\circ}C$. Hydrolyzed sol was spin coated on a quartz wafer at 3500 rpm for 60 s and pyrolyzed at $1100^{\circ}C$ for 1 h. After heat treatment, the coated layer became dense and smooth.

Sensitivity Analysis of Volcanic Ash Inherent Optical Properties to the Remote Sensed Radiation (화산재입자의 고유 광학특성이 원격탐사 복사량에 미치는 민감도 분석)

  • Lee, Kwon-Ho;Jang, Eun-Suk
    • Korean Journal of Remote Sensing
    • /
    • v.30 no.1
    • /
    • pp.47-59
    • /
    • 2014
  • Volcanic ash (VA) can be estimated by remote sensing sensors through their spectral signatures determined by the inherent optical property (IOP) including complex refractive index and the scattering properties. Until now, a very limited range of VA refractive indices has been reported and the VA from each volcanic eruption has a different composition. To improve the robustness of VA remote sensing, there is a need to understanding of VA - radiation interactions. In this study, we calculated extinction coefficient, scattering phase function, asymmetry factor, and single scattering albedo which show different values between andesite and pumice. Then, IOPs were used to analyze the relationship between theoretical remote sensed radiation calculated by radiative transfer model under various aerosol optical thickness (${\tau}$) and sun-sensor geometries and characteristics of VA. It was found that the mean rate of change of radiance at top of atmosphere versus ${\tau}$ is six times larger than in radiance values at 0.55 ${\mu}m$. At the surface, positive correlation dominates when ${\tau}$ <1, but negative correlation dominates when ${\tau}$ >1. However, radiance differences between andesite and pumice at 11 ${\mu}m$ are very small. These differences between two VA types are expressed as the polynomial regression functions and that increase as VA optical thickness increases. Finally, these results would allow VA to be better characterized by remote sensing sensors.

Fabrication of Optically Encoded Images on Porous Silicon (다공성 실리콘을 이용한 암호화된 광학이미지 제작)

  • Koh, Young-Dae;Kim, Sung-Jin;Kim, Jong-Hyeon;Rheu, Seong-Ok;Bang, Hyeon-Seok;Jeong, Yun-Sik;Park, Bo-Kyeong;Sohn, Hong-Lae
    • Journal of the Korean Vacuum Society
    • /
    • v.17 no.1
    • /
    • pp.46-50
    • /
    • 2008
  • Optical images on the porous silicon exhibiting Febry-Perot fringe pattern have been prepared by using an electrochemical etching of p-type silicon wafer (boron-doped,<100> orientation, resistivity $0.8{\sim}1.2m{\Omega}-cm$) and beam projector. The images remained in the substrate displayed an optical images correlating to the optical pattern and could be useful for optical data storage. A decrease in the effective optical thickness of the Febry-Perot layers was observed, indicative of a change in refractive index induced by exposing of porous silicon to the white light. This provides the ability to fabricate complex optical encoding in the surface of silicon.

In Situ X-ray Photoemission Spectroscopy Study of Atomic Layer Deposition of $TiO_2$ on Silicon Substrate

  • Lee, Seung-Youb;Jeon, Cheol-ho;Kim, Yoo-Seok;Kim, Seok-Hwan;An, Ki-Seok;Park, Chong-Yun
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.08a
    • /
    • pp.222-222
    • /
    • 2011
  • Titanium dioxide (TiO2) has a number of applications in optics and electronics due to its superior properties, such as physical and chemical stability, high refractive index, good transmission in vis and NIR regions, and high dielectric constant. Atomic layer deposition (ALD), also called atomic layer epitaxy, can be regarded as a special modification of the chemical vapor deposition method. ALD is a pulsed method in which the reactant vapors are alternately supplied onto the substrate. During each pulse, the precursors chemisorb or react with the surface groups. When the process conditions are suitably chosen, the film growth proceeds by alternate saturative surface reactions and is thus self-limiting. This makes it possible to cover even complex shaped objects with a uniform film. It is also possible to control the film thickness accurately simply by controlling the number of pulsing cycles repeated. We have investigated the ALD of TiO2 at 100$^{\circ}C$ using precursors titanium tetra-isopropoxide (TTIP) and H2O on -O, -OH terminated Si surface by in situ X-ray photoemission spectroscopy. ALD reactions with TTIP were performed on the H2O-dosed Si substrate at 100$^{\circ}C$, where one cycle was completed. The number of ALD cycles was increased by repeated deposition of H2O and TTIP at 100$^{\circ}C$. After precursor exposure, the samples were transferred under vacuum from the reaction chamber to the UHV chamber at room temperature for in situ XPS analysis. The XPS instrument included a hemispherical analyzer (ALPHA 110) and a monochromatic X-ray source generated by exciting Al K${\alpha}$ radiation (h${\nu}$=1486.6 eV).

  • PDF