• Title/Summary/Keyword: complex motion

Search Result 817, Processing Time 0.024 seconds

Field Measurements of the New CCTV Tower in Beijing

  • Xu, Y.L.;Zhan, S.;Xia, H.;Xia, Y.;Zhang, N.
    • International Journal of High-Rise Buildings
    • /
    • v.2 no.3
    • /
    • pp.171-178
    • /
    • 2013
  • The emergence of a growing number of tall buildings, often with unusual shapes and innovative structural systems, has led to the realization of the need for and the importance of field measurements. The new China Central Television (CCTV) Tower in Beijing is one of tall buildings with a highly unusual shape and a complex structural system, requiring field measurements to identify its dynamic characteristics for the subsequent dynamic analysis of the tower under wind excitation, seismic-induced ground motion and traffic-induced ground motion. The structural system and the finite element model of the CCTV Tower are first introduced in this paper. The computed natural frequencies and mode shapes are then presented as a reference for the field measurement. After introducing the arrangement of the ambient vibration measurement, the field measured natural frequencies and damping ratios of the CCTV Tower are presented and the measured natural frequencies are finally compared with the computed ones. It was found that the structural damping ratios of the CCTV Tower are small and the computed natural frequencies are smaller than the measured ones by about 12~17%.

Calculation of Load on Jacket Leg during Float-over Installation of Dual Topsides using Single Vessel (단일 설치선을 사용한 2기 해양플랜트 Topside Float Over 설치 시 Jacket Leg의 하중 계산)

  • Bae, Dong-Yeol;Lee, Seung-Jae;Lee, Jaeyong
    • Journal of Ocean Engineering and Technology
    • /
    • v.29 no.2
    • /
    • pp.135-142
    • /
    • 2015
  • The float over method is the most preferred method for installing heavy topside onto a jacket platform. A very complex platform with multiple jacket structures on a specific field requires multiple installation procedures. This study validated the installation of two topsides using a single installation barge to reduce the operation and installation cost. The hydrodynamic properties of the installation barge during the installation of two topsides were calculated. The tension and fender forces during docking were investigated to show the validity of the proposed dual topside installation method. In conclusion, the operational safety of the proposed procedure was validated through the calculation of the motion of the installation vessel and loads on the jacket legs.

Possibility of Chaotic Motion in the R&D Activities in Korea

  • Loh, Jeunghwee
    • Journal of Information Technology Applications and Management
    • /
    • v.21 no.3
    • /
    • pp.1-17
    • /
    • 2014
  • In this study, various characteristics of R&D related economic variables were studied to analyze complexity of science and technology activities in Korea, as reliance of R&D activities of the private sector is growing by the day. In comparison to other countries, this means that it is likely to be fluctuated by economic conditions. This complexity characteristic signifies that the result of science and technology activities can be greatly different from the anticipated results - depending on the influences from economic conditions and the results of science and technology activities which may be unpredictable. After reviewing the results of 17 variables related to science and technology characteristics of complex systems intended for time-series data - in the total R&D expenditure, and private R&D expenditure, numbers of SCI papers, the existence of chaotic characteristics were. using Lyapunov Exponent, Hurst Exponent, BDS test. This result reveals science and technology activity of the three most important components in Korea which are; heavy dependence on initial condition, the long term memory of time series, and non-linear structure. As stable R&D investment and result are needed in order to maintain steady development of Korea economy, the R&D structure should be less influenced by business cycles and more effective technology development policy for improving human resource development must be set in motion. And to minimize the risk of new technology, the construction of sophisticated technology forecasting system should take into account, for development of R&D system.

Fabrication of Linear Ultrasonic Motor and Effects of the Pressing Force Applied to Rotors on Characteristics (선형 초음파 전동기의 제작과 특성에 미치는 회전자의 가압력)

  • Lee, Myung-Hun;U, Sang-Ho;Kim, Young-Gyun;Kim, Jin-Soo
    • Proceedings of the KIEE Conference
    • /
    • 2000.07b
    • /
    • pp.741-743
    • /
    • 2000
  • In this paper the relationship between the pressing force applied to rotors and the characteristics of ultrasonic motor are discussed. The characteristics of ultrasonic motor using a piezoelectric vibrator were systematically studied. And these were applied to the construction of a card forwarding device. The principle of ultrasonic motor is to use an elliptical motion generated on the side of the vibrator, and the elliptical motion of the ultrasonic motor was obtained by complex oscillation of $L_1-B_4$ mode. As the experimental results. the forwarding speed of the card increased linearly as the pressing force applied to rotors increased. The forwarding speed of the card was 16.0 cm/s when the pressing force applied to rotors was 1 N. The forwarding force of the card increased linearly as the pressing force applied to rotors increased. The forwarding force of the card was 398 mN when the pressing force applied to rotors was 1 N. Therefore, this ultrasonic motor can be expected to be used for card-forwarding device and so on.

  • PDF

Efficient analysis of SSI problems using infinite elements and wavelet theory

  • Bagheripour, Mohamad Hossein;Rahgozar, Reza;Malekinejad, Mohsen
    • Geomechanics and Engineering
    • /
    • v.2 no.4
    • /
    • pp.229-252
    • /
    • 2010
  • In this paper, Soil-Structure Interaction (SSI) effect is investigated using a new and integrated approach. Faster solution of time dependant differential equation of motion is achieved using numerical representation of wavelet theory while dynamic Infinite Elements (IFE) concept is utilized to effectively model the unbounded soil domain. Combination of the wavelet theory with IFE concept lead to a robust, efficient and integrated technique for the solution of complex problems. A direct method for soil-structure interaction analysis in a two dimensional medium is also presented in time domain using the frequency dependent transformation matrix. This matrix which represents the far field region is constructed by assembling stiffness matrices of the frequency dependant infinite elements. It maps the problem into the time domain where the equations of motion are to be solved. Accuracy of results obtained in this study is compared to those obtained by other SSI analysis techniques. It is shown that the solution procedure discussed in this paper is reliable, efficient and less time consuming as compared to other existing concepts and procedures.

Time-domain analyses of the layered soil by the modified scaled boundary finite element method

  • Lu, Shan;Liu, Jun;Lin, Gao;Wang, Wenyuan
    • Structural Engineering and Mechanics
    • /
    • v.55 no.5
    • /
    • pp.1055-1086
    • /
    • 2015
  • The dynamic response of two-dimensional unbounded domain on the rigid bedrock in the time domain is numerically obtained. It is realized by the modified scaled boundary finite element method (SBFEM) in which the original scaling center is replaced by a scaling line. The formulation bases on expanding dynamic stiffness by using the continued fraction approach. The solution converges rapidly over the whole time range along with the order of the continued fraction increases. In addition, the method is suitable for large scale systems. The numerical method is employed which is a combination of the time domain SBFEM for far field and the finite element method used for near field. By using the continued fraction solution and introducing auxiliary variables, the equation of motion of unbounded domain is built. Applying the spectral shifting technique, the virtual modes of motion equation are eliminated. Standard procedure in structural dynamic is directly applicable for time domain problem. Since the coefficient matrixes of equation are banded and symmetric, the equation can be solved efficiently by using the direct time domain integration method. Numerical examples demonstrate the increased robustness, accuracy and superiority of the proposed method. The suitability of proposed method for time domain simulations of complex systems is also demonstrated.

Wavelet transform-based hierarchical active shape model for object tracking (객체추적을 위한 웨이블릿 기반 계층적 능동형태 모델)

  • Kim Hyunjong;Shin Jeongho;Lee Seong-won;Paik Joonki
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.29 no.11C
    • /
    • pp.1551-1563
    • /
    • 2004
  • This paper proposes a hierarchical approach to shape model ASM using wavelet transform. Local structure model fitting in the ASM plays an important role in model-based pose and shape analysis. The proposed algorithm can robustly find good solutions in complex images by using wavelet decomposition. we also proposed effective method that estimates and corrects object's movement by using Wavelet transform-based hierarchical motion estimation scheme for ASM-based, real-time video tracking. The proposed algorithm has been tested for various sequences containing human motion to demonstrate the improved performance of the proposed object tracking.

The Anatomy and Biomechanics of knee joint for orthopedic local taping (슬관절의 정형의학적 국소 테이핑을 위한 해부학과 생체역학에 관한 문헌적 고찰)

  • Lim, Hyun-Dai;Kim, Hye-Won;Kim, Yong-Kwon
    • Journal of Korean Physical Therapy Science
    • /
    • v.9 no.4
    • /
    • pp.177-184
    • /
    • 2002
  • The knee joint is composed of 3 skeletons that is the femoral bone, the tibial bone, and the patella bone. The tibiofemoral pint and patellofemoral pint act with the meniscus, so these function that is maintain the stabilities by the surrounding soft tissue is complex. The protection mechanism(muscle tension) of the surrounding muscles for the joint disease(Arthritis) limits consistently the motion of the pint to decrease the internal pressure of the joint, and these muscle tension acts with abnormal function for the surrounding tissue and the joint, sometimes the contracture is developed, if the joint with disease is not recovery or treated within early time. So we worked out efficient orthopedic local taping for the patient who is complained of the knee pint pain using the literature investigation about the anatomical structure and the biomechanics of the knee pint for the muscle and the pint problem esp, the rotation of the tibia, the dislocation of the patella, and the motion of the meniscus that is developed due to tension of surrounding muscles of the knee pint. And application of the pint mobilization, the stretching, and the muscle strengthening exercise for the pint will become successful treatment for the joint disease.

  • PDF

Development of a Reference-Pulse Type 3-Axis Simultaneously Controlled PC-NC Milling System (Reference-Pulse 방식 3축 동시제어 PC-NC 밀링 시스템 개발에 관한 연구)

  • Yang, Min-Yang;Hong, Won-Pyo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.16 no.11
    • /
    • pp.197-203
    • /
    • 1999
  • Increasing demands on precision machining have necessitated the tool to move not only position error as small as possible, but also with smoothly varying feedrates. Because of the lack of accurate and efficient algorithms for generation of 3-dimensional lines and circles, a full accomlishment for available machine tool resolution is generally unavailable. In this paper, a reference-pulse type 3-axis PC_NC milling system is developed for the precision machining of complex shapes in 3-dimensional space. Three AC servomotors are used as the actuator instead of the hand wheel to operate a 3-axis milling machine under the same mechanical structure. A PC is used to handle the control signal calculation for various types of motion command. To achieve the synchronous 3-axis motion, a real-time reference-pulse 3-dimensional linear and circular interpolator based on the intersection criteria is developed in software. The performance test via computer simulation and actual machining have shown that the PC-NC milling system is useful for the machining of arbitrary lines and circles in 3-dimensional space.

  • PDF

Novel aspects of elastic flapping wing: Analytical solution for inertial forcing

  • Zare, Hadi;Pourtakdoust, Seid H.;Bighashdel, Ariyan
    • Advances in aircraft and spacecraft science
    • /
    • v.5 no.3
    • /
    • pp.335-348
    • /
    • 2018
  • The structural dynamics (SD) behavior of Elastic Flapping Wings (EFWs) is investigated analytically as a novel approach in EFWs analysis. In this regard an analytical SD solution of EFW undergoing a prescribed rigid body motion is initially derived, where the governing equations are expressed in modal space. The inertial forces are also analytically computed utilizing the actuator induced acceleration effects on the wing structure, while due to importance of analytical solution the linearity assumption is also considered. The formulated initial-value problem is solved analytically to study the EFW structural responses, where the effect of structure-actuator frequency ratio, structure-flapping frequency ratio as well as the structure damping ratio on the EFW pick amplitude is analyzed. A case study is also simulated in which the wing is modeled as an elastic beam with shell elements undergoing a prescribed sinusoidal motion. The corresponding EFW transient and steady response in on-off servo behavior is investigated. This study provides a conceptual understanding for the overall EFW SD behavior in the presence of inertial forces plus the servo dynamics effects. In addition to the substantial analytical results, the study paves a new mathematical way to better understanding the complex role of SD in dynamic EFWs behavior. Specifically, similar mathematical formulations can be carried out to investigate the effect of aerodynamics and/or gravity.