• Title/Summary/Keyword: complex motion

Search Result 814, Processing Time 0.028 seconds

A state space method for coupled flutter analysis of long-span bridges

  • Ding, Quanshun;Chen, Airong;Xiang, Haifan
    • Structural Engineering and Mechanics
    • /
    • v.14 no.4
    • /
    • pp.491-504
    • /
    • 2002
  • A state-space method is proposed to analyze the aerodynamically coupled flutter problems of long-span bridges based on the modal coordinates of structure. The theory about complex modes is applied in this paper. The general governing equation of the system is converted into a complex standard characteristic equation in a state space format, which contains only two variables. The proposed method is a single-parameter searching method about reduced velocity, and it need not choose the participating modes beforehand and has no requirement for the form of structure damping matrix. The information about variations of system characteristics with reduced velocity and wind velocity can be provided. The method is able to find automatically the lowest critical flutter velocity and give relative amplitudes, phases and energy ratios of the participating modes in the flutter motion. Moreover, the flutter analysis of Jiangyin Yangtse suspension bridge with 1385 m main span is performed. The proposed method has proved reliable in its methodology and efficient in its use.

The strain of the spring ligament complex at different arthrodesis of the hindfoot for treatment of the flatfoot (평편족의 치료로 이용한 관절고정술시 스프링인대군 (spring ligament complex)에서 strain의 변화)

  • Lee, Kyung-Tai;Bae, Joon-Woo
    • Journal of Korean Foot and Ankle Society
    • /
    • v.1 no.1
    • /
    • pp.38-42
    • /
    • 1997
  • It was well known that arthrodesis of the tarsal joint is an exellent procedure to correct the flatfoot deformity for relieving pain. Recently, concept of the selective tarsal joint fusion instead of the triple fusion was developedto preserve the joint motion. To investigate and compare the effect of the each different tarsal fusion, we measured the strain at the spring ligament, medial roof of the medial longitudianl arch. Five fresh frozen cadevar foot specimens, with distal half of the tibia were utilized. The superomedial portion of the spring ligament complex was dissected from the origin to the insertion. For each specimen, a calibrated open liquid metal strain guage was secured along the length of the superomedial portion. Under the specially devised test rig, measurement of the strain was taken at each test condition from the tare weight 18.2 lb followed by 38.2 lb., 82.2 lb and a maximum loads of 134.6 lb. : 1) unfused condition, 2) isolated subtalar fusion 3) isolated talonavicular fusion 4) combined subtalar and talonavicular fusion 5) triple fusion. Statistics showed that siginificant reduction in strain following the triple fusion, and from the subtalar fusion to triple fusion.

  • PDF

Controller Parameters Design of Direct Drive Servo Valve Using Genetic Algorithm and Complex Method (유전자 알고리즘과 콤플렉스법에 의한 직접구동형 서보밸브의 제어기 상수값 설계)

  • Lee, Seong Rae
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.37 no.4
    • /
    • pp.475-481
    • /
    • 2013
  • The control system of a direct drive servo valve is a nonlinear system, and the flow force effect on the spool motion is significant and dependent on the load pressure. To satisfy the control system design requirements, the optimal parameters of the lead-lag controller and the derivative feedback controller are searched for using a genetic algorithm and a complex constrained direct search type method. The obtained controller parameters successfully perform their role to satisfy the control system design requirements.

Effect of Hysteresis on Interface Waves in Contact Surfaces

  • Kim, Noh-Yu;Yang, Seung-Yong
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.30 no.6
    • /
    • pp.578-586
    • /
    • 2010
  • This paper describes a theoretical model and acoustic analysis of hysteresis of contacting surfaces subject to compression pressure. Contacting surfaces known to be nonlinear and hysteretic is considered as a simple spring that has a complex stiffness connecting discontinuous displacements between two solid contact boundaries. Mathematical formulation for 1-D interfacial wave propagation between two contacting solids is developed using the complex spring model to derive the dispersion relation between the interface wave speed and the complex interfacial stiffness. Existence of the interface wave propagating along the hysteretic interface is studied in theory and discussed by investigating the solution to the dispersion equation. Unlike the linear interface without hysteresis, there can exist only one distinct mode of interface waves for the hysteretic interface, which is anti-symmetric motion. The anti-symmetric mode of interface wave propagates with the velocity faster than the Rayleigh surface wave but less than the shear wave depending on the interfacial stiffness. If the contacting surfaces are compressed so much that the linear interfacial stiffness is very high, the hysteretic stiffness does not affect the interface wave velocity. However, it has an effect on the speed of interface wave for a loosely contact surfaces with a relatively low linear stiffness. It is also found that the phase velocity of anti-symmetric wave mode converges to the shear wave velocity in despite of the linear stiffness value if the hysteretic stiffness approaches 0.5.

Effect of Repeated Lumbar Sympathetic Ganglion Block with Triamcinolone on Complex Regional Pain Syndrome of Vascular Origin -A case report- (혈관성 원인의 복합부위통증증후군에서의 Triamcinolone을 사용한 반복적 요부교감신경절차단의 효과 -증례 보고-)

  • Jung, Sung-Mee;Han, Kyung-Ream;Ock, Kyung-Jong;Park, Soo-Kyeong;Kim, Chan;Kim, Jin-Soo;Hwang, Hyuk-E
    • The Korean Journal of Pain
    • /
    • v.14 no.1
    • /
    • pp.118-122
    • /
    • 2001
  • Complex regional pain syndrome type I of vascular origin is difficult to detect unless the classic symptoms and signs exist and/or overt extremity trauma has precipitated the pain. The diagnosis is confirmed by relief of pain following a sympathetic nerve blockade. A 36-year-old woman with arterial occlusive disease of the right lower extremity presented with burning pain and hyperesthesia after sprain had occurred which was accompanied by motor weakness of right ankle. A lumbar sympathetic ganglion blockade with 2% lidocaine 10 ml and triamcinolone 80 mg produced prompt improvement of the pain and motion.

  • PDF

A Study on Determining Complex Young's Modulus of Acoustic Materials (음향 재질의 복소수 모듈러스 추출에 관한 연구)

  • Kim, In-Su;Lee, Hyo-Keun;Kim, Sung-Hee
    • The Journal of the Acoustical Society of Korea
    • /
    • v.10 no.1
    • /
    • pp.30-36
    • /
    • 1991
  • Since the Complex Young's Modulus of acoustic materials is a function of frequency under a static load, a cylindrical specimen modelled by rod-like one with losses is used to determine the dynamic characteristics of materials. The specimen is excited into longitudinal vibration at its one end by shaker and at the other end, loaded by a mass corresponding to the desired static load and thus the transfer function of specimen is measured. This transfer function method is analyzed theoretically and experimentally over a frequency range of 50 Hz to 20 KHz. The analysis includes the measurability of the transfer function, the frequency range of the method and lateral motion effect.

  • PDF

Integrated Biomechanics in the Lumbo-Pelvic-Hip Complex : Focus on Sacroiliac Joint Dysfunction (요부-골반-고관절 복합체의 생체역학 -천장관절 기능부전과 관련하여-)

  • Yoon, Hong-Il;Sim, Hyun-Po;Lee, Jun-Yong
    • The Journal of Korean Academy of Orthopedic Manual Physical Therapy
    • /
    • v.19 no.1
    • /
    • pp.69-77
    • /
    • 2013
  • The pelvic girdle function as an integrated unit with all three bones moving at all three joints, are influenced by the lower extremities below and vertebral column and trunk above sacroiliac movements are caused by spinal motion, whereas iliosacral movements are caused by movements of the lower limbs. Concept of normal functional integration among the lumbar spine, pelvic and hip joint is basic to the understanding of dysfunction in this region and also functional movement of the lumbo-pelvic-hip region are part of the clinical examination, consequently the integrated biomechanics of these region need to be understood. The purpose of this review is to ascertain the integrated biomechanics among the lumbo-pelvic-hip complex by consideration of literature and to give sufficient information to be able to render accurate assessment and treatment for the syndromes described.

  • PDF

Vibrational Analysis of Azacrown Ether Complex with Li Metal Cation

  • Min, Kyung-Chul;Park, Sun-Kyung;Lee, Choong-Keun;Kim, Chang-Suk;Lee, Nam-Soo
    • Bulletin of the Korean Chemical Society
    • /
    • v.31 no.11
    • /
    • pp.3385-3390
    • /
    • 2010
  • $Li^+$ ion complex of azacrown ether with restricted motion of freedom and pseudo-bilateral symmetry was studied by infrared spectroscopy, which has shown simplified and broadened vibrational features. The C=O and N-H stretching bands, in particular, shows anomalous broadening nearly ${\sim}50\;cm^{-1}$. The density functional calculation at the level of BP86/6-31+$G^{**}$ shows that $Li^+$ ion is trapped and rather free to move around inside the cavity, as much as about $0.70\;{\AA}$. Through the relocation of $Li^+$ ion inside the cavity, the conformational changes would occur rapidly in its symmetry $C_1\;{\rightleftarrows}\;C_2\;{\rightleftarrows}\;C_1$$. The potential barrier was obtained to be merely ~2.2 kJ/mol for $C_1\;{\rightarrow}\;C_2$. During this conformational alteration, the amide backbone twists concurrently its dihedral angle side to side about up to ${\pm}3$ degree. Selected vibrational modes were interpreted in terms of the force constant variations of local symmetry coordinates between conformations in the framework of $C_1\;{\rightleftarrows}\;C_2\;{\rightleftarrows}\;C_1$.

Effect of Scapulothoracic Joint Movement and Resistance Training Intensity on Shoulder Complex Muscle Activation during Bench Press Exercise (벤치 프레스 운동 시 하중에 따른 어깨가슴관절의 움직임이 어깨복합체 근 활성도에 미치는 영향)

  • Kim, Yoon-Hwan;Lee, Ki-Kwang;Lee, Man-Ki
    • Korean Journal of Applied Biomechanics
    • /
    • v.23 no.2
    • /
    • pp.141-148
    • /
    • 2013
  • The purpose of this study was to investigate the scapulothoracic joint movement between different weight bearing contributing to effective bench press exercise. Ten male subjects participated in this study. All subjects were tested on the flat bench press machine which modified weight (50% and 70% of 1RM) and subjects were performed two different conditions(none protraction condition and protraction condition). Weight bar height and vertical velocity, EMG activation was measured using 3D motion capture system and wireless EMG analysis system. As the results, none protraction condition showed that it is more concentrate better pectoralis major muscle activation than protraction condition and middle pectoralis major, anterior deltoid and triceps brachii was significant higher integrated EMG in 70% of 1RM condition. In conclusion, limited scapulothoracic joint movement was more effective activated pectoralis major muscle all the weight through, while we could not find that it was not affected integrated EMG on eight muslces related to shoulder complex between scapulothracic joint movement conditions.

A Learning Controller for Repetitive Gait Control of Biped Walking Robot

  • Kho, Jae-Won;Lim, Dong-Cheol
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.1464-1468
    • /
    • 2004
  • This paper presents a learning controller for repetitive gait control of biped walking robot. We propose the iterative learning control algorithm which can learn periodic nonlinear load change ocuured according to the walking period through the iterative learning, not calculating the complex dynamics of walking robot. The learning control scheme consists of a feedforward learning rule and linear feedback control input for stabilization of learning system. The feasibility of learning control to biped robotic motion is shown via dynamic simulation with 12-DOF biped walking robot.

  • PDF