• Title/Summary/Keyword: complex fluid

Search Result 820, Processing Time 0.023 seconds

A Computer Program for 2-D Fluid-Structure-Soil Interaction Analysis (2차원 유체- 구조물-지반 상호작용해석 전산프로그램)

  • 김재민
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2000.04a
    • /
    • pp.427-434
    • /
    • 2000
  • This paper presents a computer program for a 2-D fluid-structure-soil interaction analysis. With this computer program the fluid can be modeled by a spurious free 4-node displacement-based fluid element which uses rotational penalty and mass projection technique in conjunction with the one point reduced integration scheme to remove the spurious zero energy modes. The structure and near field soil are discretized by the standard finite elements while the unbounded far field soil are discretized by the standard finite elements while the unbounded far field soil is represented by the frequency dependent dynamic infinite elements. Sine this method models directly the fluid-structure-soil system it can be applied to the dynamci analysis of 2-D liquid storage structure with complex geometry. For the purpose of verification dynamic analyses for tanks on a rigid foundation and on compliant embankment are carried out. Comparison of the present results with those by ANSYS program shows good agreement.

  • PDF

Earthquake Response Analysis for 2-D Fluid-Structure-Soil Systems (2차원 유체-구조뭍-지반계의 지진응답해석)

  • 윤정방;장수혁;김재민;홍선기
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2000.04b
    • /
    • pp.289-296
    • /
    • 2000
  • This paper presents a method of seismic analysis for a 2-D fluid-structure-soil interaction systems. With this method, the fluid can be modeled by spurious free 4-node displacement-based fluid elements which use rotational penalty and mass projection technique in conjunction with the one point reduced integration scheme to remove the spurious zero energy modes. The structure and the near-field soil are discretized by the standard 2-D finite elements, while the unbounded far-field soil is represented by the dynamic infinite elements in the frequency domain. Since this method directly models the fluid-structure-soil interaction systems, it can be applied to the dynamic analysis of a 2-D liquid storage structure with complex geometry. Finally, results of seismic analyses are presented for a spent fuel storage tank embedded in a layered half-space and a massive concrete dam on a layered half-space.

  • PDF

Earthquake Response Analysis for 2-D Fluid-Structure-Soil Systems (2차원 유체-구조물-지반계의 지진응답해석)

  • 윤정방;장수혁;김재민
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2001.10a
    • /
    • pp.132-137
    • /
    • 2001
  • This paper presents a method of seismic analysis for a 2-D fluid-structure-soil interaction systems. With this method, the fluid can be modeled by spurious free 4-node displacement-based fluid elements which use rotational penalty and mass projection technique in conjunction with the one point reduced integration scheme to remove the spurious zero energy modes. The structure and the near-field soil are discretized by the standard 2-D finite elements, while the unbounded far-field soil is represented by the dynamic infinite elements in the frequency domain. Since this method directly models the fluid-structure-soil interaction systems, it can be applied to the dynamic analysis of a 2-D liquid storage structure with complex geometry. Finally, results of seismic analyses are presented for a spent fuel storage tank embedded in a layered half-space and a massive concrete dam on a layered half-space.

  • PDF

A Study on the Improvement of Performance for High Speed Cutting Tool using Magnetic Fluid Polishing Technique (자기연마기술을 이용한 고속절삭공구의 성능향상에 관한 연구)

  • Cho, Jong-Rae;Yang, Sun-Cheul;Jung, Yoon-Gyo
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.15 no.1
    • /
    • pp.32-38
    • /
    • 2006
  • The magnetic fluid polishing technique can polish the tool of complex shape, because the polishing method which polishes as compress the workpiece by the magnetism abrasives to arrange to the linear according to the line of magnetic force. Therefore, we producted the magnetic fluid polishing device in order that mirror like finishing processes the tool surface. In order to a polishing condition selection, polishing characteristic was estimated by polishing conditions which are magnetic flux density, polishing speed, grain size, magnetic fluid. The tool was polished to the selected polishing condition. The result to evaluate the polished tool's performance with the cutting force and tool wear, the polished tool's performance was improved compared with the tool not to polish.

HYDROPLANING ANALYSIS BY FEM AND FVM - EFFECT OF TIRE ROLLING AND TIRE PATTERN ON HYDROPLANING

  • Nakajima, Y.;Seta, E.;Kamegawa, T.;Ogawa, H.
    • International Journal of Automotive Technology
    • /
    • v.1 no.1
    • /
    • pp.26-34
    • /
    • 2000
  • The new numerical procedure for hydroplaning has been developed by considering the following three important factors; fluid/structure interaction, tire rolling, and practical tread pattern. The tire was analyzed by FEM with Lagrangian formulation and the fluid is analyzed by FVM with Eulerian formulation. Since the tire and the fluid are modeled separately and their coupling is automatically computed by the coupling element, the fluid/structure interaction of the complex geometry such as the tire with the tread pattern can be analyzed practically. We verified the predictability of the hydroplaning simulation in the different parameters such as the water flow, the velocity dependence of hydroplaning, and the effect of the tread pattern on hydroplaning. In order to predict the streamline in the contact patch, the procedure of the global-local analysis was developed. Since the streamline could be predicted by this technology, we could develop the new pattern in a short period based on the principle; "make the stream line smooth".

  • PDF

Hydroelastic vibration analysis of wetted thin-walled structures by coupled FE-BE-Procedure

  • Rohr, Udo;Moller, Peter
    • Structural Engineering and Mechanics
    • /
    • v.12 no.1
    • /
    • pp.101-118
    • /
    • 2001
  • The reliable prediction of elastic vibrations of wetted complex structures, as ships, tanks, offshore structures, propulsion components etc. represent a theoretical and numerical demanding task due to fluid-structure interaction. The paper presented is addressed to the vibration analysis by a combined FE-BE-procedure based on the added mass concept utilizing a direct boundary integral formulation of the potential fluid problem in interior and exterior domains. The discretization is realized by boundary element collocation method using conventional as well as infinite boundary element formulation with analytical integration scheme. Particular attention is devoted to modelling of interior problems with both several separate or communicating fluid domains as well as thin-walled structures wetted on both sides. To deal with this specific kind of interaction problems so-called "virtual" boundary elements in areas of cut outs are placed to satisfy the kinematical conditions in partial connected fluid domains existing in realistic tank systems. Numerical results of various theoretical and practical examples demonstrate the performance of the BE-methodology presented.

Simulation of industrial multiphase flows (공학적 관점에서의 다상유동 문제의 수치해석)

  • Han aehoon;Alajbegovic Ales;Seo Hyeoncheol;Blahowsky Peter
    • Proceedings of the KSME Conference
    • /
    • 2002.08a
    • /
    • pp.389-392
    • /
    • 2002
  • In many industrial applications, multiphase flow analysis is the norm rather than an exception as compared to more-conventional single-phase investigation. This paper describes the implementation of the multiphase flow simulation capability in the general purpose CFD software AVL FIRE/SWIFT. The governing equations are discretized based on a finite volume method (FVM) suitable fur very complex geometry, The pressure field is obtained using the SIMPLE algorithm. Depending on the characteristics of the multiphase flow to be examined, the user can choose either the two-fluid model or an explicit interface-tracking model based on the Volume-of-Fluid approach. For truly 'multi'-phase flow problems, it is also possible to apply a hybrid model where certain phases are explicitly tracked while the other phases are handled by the two fluid model. In order to demonstrate the capability of the method, applications to the Taylor bubble flow simulations are presented.

  • PDF

A Study on the Influences of the cutting fluid to the Environment (절삭가공시 절삭유제가 환경에 미치는 영향에 관한 연구)

  • Choi, Myung-Soo;Jung, Sun-Hwan;No, Seung-Hoon;Choi, Hwan;Choi, Sung-Dae
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2000.05a
    • /
    • pp.939-943
    • /
    • 2000
  • This study was carried out to examine the influences of the cutting fluid to the environment of the small and he medium industries in the Kumi complex. The result of this study shows that the cutting fluid includes a few of hazardrous materials such as phenol and benzen. Therefore a new cutting technology without cutting fluid should be strongly recommended in the nearest future.

  • PDF

Substructure/fluid subdomain coupling method for large vibroacoustic problems

  • El Maani, Rabii;El Hami, Abdelkhalak;Radi, Bouchaib
    • Structural Engineering and Mechanics
    • /
    • v.65 no.4
    • /
    • pp.359-368
    • /
    • 2018
  • Dynamic analysis of complex and large structures may be costly from a numerical point of view. For coupled vibroacoustic finite element models, the importance of reducing the size becomes obvious because the fluid degrees of freedom must be added to the structural ones. In this paper, a component mode synthesis method is proposed for large vibroacoustic interaction problems. This method couples fluid subdomains and dynamical substructuring of Craig and Bampton type. The acoustic formulation is written in terms of the velocity potential, which implies several advantages: coupled algebraic systems remain symmetric, and a potential formulation allows a direct extension of Craig and Bampton's method to acoustics. Those properties make the proposed method easy to implement in an existing finite element code because the local numerical treatment of substructures and fluid subdomains is undifferentiated. Test cases are then presented for axisymmetric geometries. Numerical results tend to prove the validity and the efficiency of the proposed method.

Plow Analysis for Radiating Fluid with Density Variation affected by Overheat Ratio (과열비에 따른 유체밀도 변화를 고려한 복사유체 유동 해석)

  • Han C. Y.;Chae J. W.;Park E. S.;Nam M. G.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2005.04a
    • /
    • pp.75-78
    • /
    • 2005
  • A numerical investigation has been performed to discuss the radiation-affected steady-laminar natural convection in an enclosure under a large temperature difference. Due to inherent nature of this study, the Boussinesq approximation is no longer valid. Therefore the radiating fluid in an enclosure is treated as a ideal gas. To examine the effects of thermal radiation on thermo-fluid dynamic behaviors in complex geometries, two incomplete partitions are introduced. Based on the results of this study, the dispositions of incomplete partitions with radiatively participating medium are found to incur a distinct difference in fluid-dynamic as well as thermal behavior.

  • PDF