• Title/Summary/Keyword: complex fermentation

Search Result 153, Processing Time 0.03 seconds

Bioconversion of Rutin in Tartary Buckwheat by the Korean Indigenous Probiotics (한국형 프로바이오틱스에 의한 쓴메밀 내 rutin의 생물전환)

  • Chang Kwon;Jong Won Kim;Young Kwang Park;Seungbeom Kang;Myung Jun Chung;Su Jeong Kim;Sanghyun Lim
    • Microbiology and Biotechnology Letters
    • /
    • v.51 no.1
    • /
    • pp.83-92
    • /
    • 2023
  • In this study, bioconversion of rutin to quercetin was confirmed by the fermentation of Korean indigenous probiotics and tartary buckwheat. Based on whole genome sequencing of 17 probiotics species, α-rhamnosidase, related to bioconversion of isoquercetin (quercetin 3-β-D glucoside) from rutin, is identified in the genome of CBT BG7, LC5, LR5, LP3, LA1, and LGA1. β-Glucosidase, related to bioconversion of isoquercetin to quercetin, is identified in the genome of all 17 species. Among the 17 probiotics species, 6 probiotics including CBT BG7, LR5, LP3, LA1, LGA1 and ST3 performed the bioconversion of rutin to quercetin up to 21.5 ± 0.3% at 7 days after fermentation. The fermentation of each probiotics together with enzyme complex Cellulase KN® was conducted to reduce the time of bioconversion. As a result, CBT LA1 which showed the highest yield of bioconversion of 21.5 ± 0.3% when the enzyme complex was not added showed high bioconversion yield of 84.6 ± 0.5% with adding the enzyme complex at 1 day after fermentation. In particular, CBT ST3 (96.2 ± 0.4%), SL6 (90.1 ± 1.4%) and LP3 (90.0 ± 0.4%) showed high yield of bioconversion more than 90%. In addition, such probiotics including high levels in quercetin indicated the inhibitory effects of NO production in LPS-induced RAW264.7 cells. In this study, we confirmed that the fermentation of Korean indigenous probiotics and enzyme complex together with roasted tartary buckwheat increased the content of quercetin and reduced the time of bioconversion of rutin to quercetin which is a bioactive compound related to anti-inflammatory, antioxidants, anti-obesity, and anti-diabetes.

Polysulfone/nanocomposites mixed matrix ultrafiltration membrane for the recovery of Maillard reaction products

  • Basu, Subhankar;Mukherjee, Sanghamitra;Balakrishnan, Malini;Deepthi, M.V.;Sailaja, R.R.N.
    • Membrane and Water Treatment
    • /
    • v.9 no.2
    • /
    • pp.105-113
    • /
    • 2018
  • Maillard reaction products like melanoidins present in industrial fermentation wastewaters are complex compounds with various functional properties. In this work, novel ultrafiltration (UF) mixed matrix membrane (MMM) composed of polysulfone (PSF) and nanocomposites was prepared through a phase inversion process for the recovery of melanoidins. Nanocomposites were prepared with acid functionalized multiwalled carbon nanotubes (MWCNTs) as the reinforcing filler for chitosan-thermoplastic starch blend. Higher nanocomposites content in the PSF matrix reduced the membrane permeability and melanoidins retention indicating tighter membrane with surface defects. The membrane surface defects could be sealed with dilute polyvinyl alcohol (PVA) solution. The best performing membrane (1% nanocomposites in 18% PSF membrane sealed with 0.25% PVA coating) resulted in uniform melanoidins retention of 98% and permeability of 3.6 L/m2 h bar over a period of 8h. This demonstrates a low fouling PSF membrane for high melanoidins recovery.

Comparison of Alcohol Fermentation of Low Quality Potatoes and Sweet Potatoes with Ultrasonification Process (초음파를 이용한 무증자 저 상품용 감자와 고구마의 알코올 발효 비교)

  • Kim, Cheol-Hee;Han, Jae-Gun;Ling, Jin;Jung, Hyang-Sook;Oh, Sung-Ho;Jeong, Myung-Hoon;Jung, Kyung-Hwan;Choi, Geun-Pyo;Park, Uk-Yeon;Lee, Hyeon-Yong
    • Korean Journal of Medicinal Crop Science
    • /
    • v.17 no.2
    • /
    • pp.121-124
    • /
    • 2009
  • This study was performed to compare alcohol fermentation ability and saccharification of potatoes and sweet potatoes. Cooperated with ultrasonification process is not contain pass through cook process, but contain process using ulrasonification instead cook process. In result of sugar contents measurements sweet potato and potato was highest of a family at 6 hours fermentation, and it showed the highest sugar contents as each 11.5 brix, 10.4 brix. In result of alcohol contents measurements of sweet potato and potato, highest of a family in 4 days, and it showed th highest alcohol contents as each 8.2, 6.0%. Finally complex enzymes II process revealed similar activities like cook process.

Studies on the Effect of Seed Koji for the Soysauce Qualities (종국(種麴)의 종류(種類)가 간장의 품질(品質)에 미치는 영향(影響)에 관(關)한 연구(硏究))

  • Lee, Suk-Kun;Lee, Taik-Soo
    • Applied Biological Chemistry
    • /
    • v.19 no.3
    • /
    • pp.155-161
    • /
    • 1976
  • The say sauce koji where made use of different kinds of seed koji were used to brewing of soysauce. The pure, complex and bacteria contaminated seed koji were used in this experiment, And the euzyme activity, Micrflora, chemical composition and TN-solubility ratio of each soysauce mash during the fermentation periods were measured respectively. The results obtained were as follows. 1. The neutral and alkali protease activity of each soysauce mash were decreassed in the process of fermentation period. In this case the activitities of protease in the bacteria contaminated koji were remarkably decreased. 2. The microflora in one ml of soysauce mash showed the tendency of increase in process of fermentation period. The increase in bacteria contaminated seed koji group was remarkable. 3. The content of total nitrogen, amino-N and ammonia-N in soysauce during the course of fermentation were increase. And alcohol, reducing sugar and pure extract contents in soysauce were also increased in the former stage of fermentation, but in the latter stage of fermentation decreased. 4. Though the content of ammonia-N in bacteria contaminated seed koji group was high, the pH value was low in comparison with the others. 5. Pure seed koji group were shown the most effective in the result of total nitrogen solubility ratio and sensual test, while the bacteria contaminated seed koji group was the worst.

  • PDF

Functional Characteristics and Diversity of a Novel Lignocelluloses Degrading Composite Microbial System with High Xylanase Activity

  • Guo, Peng;Zhu, Wanbin;Wang, Hui;Lu, Yucai;Wang, Xiaofen;Zheng, Dan;Cui, Zongjun
    • Journal of Microbiology and Biotechnology
    • /
    • v.20 no.2
    • /
    • pp.254-264
    • /
    • 2010
  • To obtain an efficient natural lignocellulolytic complex enzyme, we screened an efficient lignocellulose-degrading composite microbial system (XDC-2) from composted agricultural and animal wastes amended soil following a long-term directed acclimation. Not only could the XDC-2 degrade natural lignocelluloses, but it could also secrete extracellular xylanase efficiently in liquid culture under static conditions at room temperature. The XDC-2 degraded rice straw by 60.3% after fermentation for 15 days. Hemicelluloses were decomposed effectively, whereas the extracellular xylanase activity was dominant with an activity of 8.357 U/ml on day 6 of the fermentation period. The extracellular crude enzyme noticeably hydrolyzed natural lignocelluloses. The optimum temperature and pH for the xylanase activity were $40^{\circ}C$ and 6.0. However, the xylanase was activated in a wide pH range of 3.0-10.0, and retained more than 80% of its activity at $25-35^{\circ}C$ and pH 5.0-8.0 after three days of incubation in liquid culture under static conditions. PCR-DGGE analysis of successive subcultures indicated that the XDC-2 was structurally stable over long-term restricted and directed cultivation. Analysis of the 168 rRNA gene clone library showed that the XDC-2 was mainly composed of mesophilic bacteria related to the genera Clostridium, Bacteroides, Alcaligenes, Pseudomonas, etc. Our results offer a new approach to exploring efficient lignocellulolytic enzymes by constructing a high-performance composite microbial system with synergistic complex enzymes.

Nutritional Studies on Production of Antibacterial Activity by the Zebra Mussel Antagonist, Pseudomonas fluorescens CL0145A

  • Polanski-Cordovano, Grace;Romano, Lea;Marotta, Lauren L.C.;Jacob, Serena;Hoo, Jennifer Soo;Tartaglia, Elena;Asokan, Deepa;Kar, Simkie;Demain, Arnold L.
    • Journal of Microbiology and Biotechnology
    • /
    • v.23 no.5
    • /
    • pp.656-660
    • /
    • 2013
  • Pseudomonas fluorescens strain CL0145A was discovered at the New York State Museum Field Research Laboratory as an effective agent against the environmentally destructive zebra mussel, which has contaminated US waters. Dried cells of the microbe are being commercialized as an environmentally friendly solution to the problem. We found that antibiotic activity against the Gram-positive bacterium Bacillus subtilis is produced and excreted by this strain. We have carried out studies to optimize production of the antibiotic. Studies were begun in a complex corn meal medium. Activity was found in both cells and culture supernates and was maximal after one day of fermentation. Static fermentation conditions were found to be superior to shaken culture. Production of extracellular antibiotic in complex medium was found to be dependent on the content of sucrose and enzyme-hydrolyzed casein. Indeed, production was greater in sucrose plus enzyme-hydrolyzed casein than in the complex medium. Of a large number of carbon sources studied as improvements over sucrose, the best was glycerol. An examination of nitrogen sources showed that production was improved by replacement of enzyme-hydrolyzed casein with soy hydrolysates. Production in the simple glycerol-Hy-Soy medium was not improved by addition of an inorganic salt mixture or by complex nitrogen sources, with the exception of malt extract. In an attempt to keep the medium more defined, we studied the effect of amino acids and vitamins as replacements for malt extract. Of 21 amino acids and 7 vitamins, we found tryptophan, glutamine, biotin, and riboflavin to be stimulatory. The final medium contained glycerol, Hy-Soy, tryptophan, glutamine, biotin, and riboflavin.

A Cellulolytic and Xylanolytic Enzyme Complex from an Alkalothermoanaerobacterium, Tepidimicrobium xylanilyticum BT14

  • Phitsuwan, Paripok;Tachaapaikoon, Chakrit;Kosugi, Akihiko;Mori, Yutaka;Kyu, Khin Lay;Ratanakhanokchai, Khanok
    • Journal of Microbiology and Biotechnology
    • /
    • v.20 no.5
    • /
    • pp.893-903
    • /
    • 2010
  • A cellulolytic and xylanolytic enzyme complex-producing alkalothermoanaerobacterium strain, Tepidimicrobium xylanilyticum BT14, is described. The cell was Grampositive, rod-shaped, and endospore-forming. Based on 16S rRNA gene analysis and various lines of biochemical and physiological properties, the strain BT14 is a new member of the genus Tepidimicrobium. The strain BT14 cells had the ability to bind to Avicel, xylan, and corn hull. The pH and temperature optima for growth were 9.0 and $60^{\circ}C$, respectively. The strain BT14 was able to use a variety of carbon sources. When the bacterium was grown on corn hulls under an anaerobic condition, a cellulolytic and xylanolytic enzyme complex was produced. Crude enzyme containing cellulase and xylanase of the strain BT14 was active in broad ranges of pH and temperature. The optimum conditions for cellulase and xylanase activities were pH 8.0 and 9.0 at $60^{\circ}C$, respectively. The crude enzyme had the ability to bind to Avicel and xylan. The analysis of native-PAGE and native-zymograms indicated the cellulosebinding protein showing both cellulase and xylanase activities, whereas SDS-PAGE zymograms showed 4 bands of cellulases and 5 bands of xylanases. Evidence of a cohesinlike amino acid sequence seemed to indicate that the protein complex shared a direct relationship with the cellulosome of Clostridium thermocellum. The crude enzyme from the strain BT14 showed effective degradation of plant biomass. When grown on corn hulls at pH 9.0 and $60^{\circ}C$ under anaerobic conditions, the strain BT14 produced ethanol and acetate as the main fermentation products.

Hydrolysates of lignocellulosic materials for biohydrogen production

  • Chen, Rong;Wang, Yong-Zhong;Liao, Qiang;Zhu, Xun;Xu, Teng-Fei
    • BMB Reports
    • /
    • v.46 no.5
    • /
    • pp.244-251
    • /
    • 2013
  • Lignocellulosic materials are commonly used in bio-$H_2$ production for the sustainable energy resource development as they are abundant, cheap, renewable and highly biodegradable. In the process of the bio-$H_2$ production, the pretreated lignocellulosic materials are firstly converted to monosaccharides by enzymolysis and then to $H_2$ by fermentation. Since the structures of lignocellulosic materials are rather complex, the hydrolysates vary with the used materials. Even using the same lignocellulosic materials, the hydrolysates also change with different pretreatment methods. It has been shown that the appropriate hydrolysate compositions can dramatically improve the biological activities and bio-$H_2$ production performances. Over the past decades, hydrolysis with respect to different lignocellulosic materials and pretreatments has been widely investigated. Besides, effects of the hydrolysates on the biohydrogen yields have also been examined. In this review, recent studies on hydrolysis as well as their effects on the biohydrogen production performance are summarized.

Study on the Fermentation Conditions Influencing the Production of Vitamin $B_{12}$ by Propionibacterium shermanii (Propionibacterium shermanii에 의한 Vitamin $B_{12}$생성에 영향을 미치는 발효조건에 관한 연구)

  • 김지영;김공환구양모
    • KSBB Journal
    • /
    • v.7 no.2
    • /
    • pp.126-131
    • /
    • 1992
  • The effects of fermentation conditions and medium compositions on the production of vitamin $B_{12}$ by Propionibacterium shermanii IFO 1239 were studied. Changes from an anaerobic to aerobic condition and a complex to synthetic medium after 48hr resulted in a 100% increase in vitamin $B_{12}$ production compared to an anaerobic culture alone. Glucose, fructose and lactose were found to be equally good as a carbon source for vitamin $B_{12}$ production. Addition of succinate and malate to the synthetic medium with glucose as a carbon source led to an increase in vitamin $B_{12}$ production by 33.6% and 17.2% respectively.

  • PDF