• Title/Summary/Keyword: complex factorization

Search Result 15, Processing Time 0.024 seconds

Acceleration of FFT on a SIMD Processor (SIMD 구조를 갖는 프로세서에서 FFT 연산 가속화)

  • Lee, Juyeong;Hong, Yong-Guen;Lee, Hyunseok
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.52 no.2
    • /
    • pp.97-105
    • /
    • 2015
  • This paper discusses the implementation of Bruun's FFT on a SIMD processor. FFT is an algorithm used in digital signal processing area and its effective processing is important in the enhancement of signal processing performance. Bruun's FFT algorithm is one of fast Fourier transform algorithms based on recursive factorization. Compared to popular Cooley-Tukey algorithm, it is advantageous in computations because most of its operations are based on real number multiplications instead of complex ones. However it shows more complicated data alignment patterns and requires a larger memory for storing coefficient data in its implementation on a SIMD processor. According to our experiment result, in the processing of the FFT with 1024 complex input data on a SIMD processor, The Bruun's algorithm shows approximately 1.2 times higher throughput but uses approximately 4 times more memory (20 Kbyte) than the Cooley-Tukey algorithm. Therefore, in the case with loose constraints on silicon area, the Bruun's algorithm is proper for the processing of FFT on a SIMD processor.

Estimation of Contribution by Pollutant Source of VOCs in Industrial Complexes of Gwangju Using Receptor Model (PMF) (수용모델(PMF)을 이용한 광주산업단지 VOCs의 오염원별 기여도 추정)

  • Park, Jin-Hwan;Park, Byoung-Hoon;Kim, Seung-Ho;Yang, Yoon-Cheol;Lee, Ki-Won;Bae, Seok-Jin;Song, Hyeong-Myeong
    • Journal of Environmental Science International
    • /
    • v.30 no.3
    • /
    • pp.219-234
    • /
    • 2021
  • Industrial emissions, mainly from industrial complexes, are important sources of ambient Volatile Organic Compounds (VOCs). Identification of the significant VOC sources from industrial complexes has practical significance for emission reduction. VOC samples were collected from July 2019 to June 2020. A Positive Matrix Factorization (PMF) receptor model was used to evaluate the VOC sources in the area. Four sources were identified by PMF analysis, including coating-1, coating-2, printing, and vehicle exhaust. The coating-1 source was revealed to have the highest contribution (41.5%), followed by coating-2 (23.9%), printing (23.1%), and vehicle exhaust (11.6%). The source showing the highest contribution was coating emissions, originating from the northwest to southwest of the sample site. It also relates to facilities that produce auto parts. The major components of VOC emissions from the coating facilities were toluene, m,p-xylene, ethylbenzene, o-xylene, and butyl acetate. Industrial emissions should be the top priority to meet the relevant control criteria, followed by vehicular emissions. This study provides a strategy for VOC source apportionment from an industrial complex, which is helpful in the development of targeted control strategies.

Performance Analysis of Secondary Gas Injection for a Conical Rocket Nozzle TVC(I) (2차 가스분사에 의한 원추형 로켓노즐 추력벡터제어 성능해석 (I))

  • 김형문;이상길;윤웅섭
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.3 no.1
    • /
    • pp.1-8
    • /
    • 1999
  • In the present paper an attempt has been made to simulate the secondary injection-primary flow interaction in the conical rocket nozzle and to derive the performance of secondary injection thrust vector control(SITVC) system. Complex three-dimensional flowfield induced by the secondary injection is numerically analyzed by solving unsteady three-dimensional Euler equation with Beam and Warming's implicit approximate factorization method. Emphasized in the present study is the effect of secondary injection such as secondary mass flow rates and the momentum of secondary/primary nozzle flow mass rates upon the gross system performance parameters such as thrust ratio, specific impulse ratio and deflection angle. The results obtained in terms of system performance parameters show that lower secondary mass flow rate is advantageous for to reduce secondary specific impulse loss. It is further found that the nozzle with secondary jet injected downstream and interacting with fast primary flow is preferable for efficient and stable SITVC over the wide range of use with the penalty of side specific impulse loss.

  • PDF

Hierrachical manner of motion parameters for sports video mosaicking (스포츠 동영상의 모자익을 위한 이동계수의 계층적 향상)

  • Lee, Jae-Cheol;Lee, Soo-Jong;Ko, Young-Hoon;Noh, Heung-Sik;Lee Wan-Ju
    • The Journal of Information Technology
    • /
    • v.7 no.2
    • /
    • pp.93-104
    • /
    • 2004
  • Sports scene is characterized by large amount of global motion due to pan and zoom of camera motion, and includes many small objects moving independently. Some short period of sports games is thrilling to televiewers, and important to producers. At the same time that kinds of scenes exhibit exceptionally dynamic motions and it is very difficult to analyze the motions with conventional algorithms. In this thesis, several algorithms are proposed for global motion analysis on these dynamic scenes. It is shown that proposed algorithms worked well for motion compensation and panorama synthesis. When cascading the inter frame motions, accumulated errors are unavoidable. In order to minimize these errors, interpolation method of motion vectors is introduced. Affined transform or perspective projection transform is regarded as a square matrix, which can be factorized into small amount of motion vectors. To solve factorization problem, we preposed the adaptation of Newton Raphson method into vector and matrix form, which is also computationally efficient. Combining multi frame motion estimation and the corresponding interpolation in hierarchical manner enhancement algorithm of motion parameters is proposed, which is suitable for motion compensation and panorama synthesis. The proposed algorithms are suitable for special effect rendering for broadcast system, video indexing, tracking in complex scenes, and other fields requiring global motion estimation.

  • PDF

Estimation of PM10 Source Contributions on Three Cities in the Metropolitan Area by Using PMF Model (PMF 모델을 이용한 수도권 내 3개 도시에서의 PM10 오염원의 기여도 추정)

  • Lee, Tae-Jung;Huh, Jong-Bae;Yi, Seung-Muk;Kim, Shin-Do;Kim, Dong-Sool
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.25 no.4
    • /
    • pp.275-288
    • /
    • 2009
  • The Korean government strengthened the environmental polices to manage and enhance Metropolitan Area air quality, and also has enforced "Special Act on Seoul Metropolitan Air Quality Improvement (SASMAQI)" issued in Dec. 2004. Recently government expanded the Seoul Metropolitan Air Quality Management District (SMAQMD) to the outskirts satellite cities of Seoul area through the "Revised Law Draft of SASMAQI". The SMAQMD has been alloted the allowable emission loads to the local governments on the basis of the carrying $PM_{10}$ capacity. However, in order to establish the effective air quality control strategy for $PM_{10}$, it is necessary to understand the corresponding sources which have a potential to directly impact ambient $PM_{10}$ concentration. To deal with the situations, many receptor methodologies have been developed to identify the origins of pollutants and to determine the contributions of sources of interests. The objective of this study was to extensively identify $PM_{10}$ sources and to estimate their contributions at the metropolitan area. $PM_{10}$ samples were simultaneously collected at the 3 semi-industrialized local cities in the Seoul metropolitan area such as Hwasung-si, Paju-si, and Icheon-si sites from April 15 to May 31, 2007. The samples collected on the teflon membrane filter by one $PM_{10}$ cyclone sampler were analyzed for trace metals and soluble ions and samples on the quartz fiber filter by another sampler were analyzed for OC and EC. Source apportionment study was then performed by using a positive matrix factorization (PMF) receptor model. A total of 6 sources were identified and their contributions were estimated in each monitoring site. Contribution results on Hwasung, Paju, and Icheon sites were as follows: 33%, 27%, and 27% from soil source, 26%, 26%, and 21% from secondary aerosol source, 11%, 11%, and 12% from biomass burning, 12%, 6%, and 5% from sea salt, 7%, 15%, and 19% from industrial related source, and finally 11%, 15%, and 16% from mobile and oil complex source, respectively. This study provides information on the major sources affecting air quality in the receptor sites and thus it will help to manage the ambient air quality in the metropolitan area by establishing reasonable control strategies, especially for the anthropogenic emission sources.