• 제목/요약/키워드: complex dynamical network

검색결과 17건 처리시간 0.018초

비동일 노드들과 연결정보 제약이 없는 복잡동적 네트워크의 동기화 (Synchronization of a Complex Dynamical Network with nonidentical Node and Free Coupling Strength)

  • 윤한오
    • 전자공학회논문지
    • /
    • 제50권8호
    • /
    • pp.292-298
    • /
    • 2013
  • 본 논문은 동일하지 않는 노드들을 갖는 복잡동적 네트워크의 동기화문제를 고려한다. 이 문제에서 타켓 노드는 별도의 독립노드 대신에 네트워크내의 한 노드를 택하였다. 더욱이 본 논문의 동기화기법에서는 기존에 존재하는 연결행렬의 정보나 부가적인 조건을 필요하지 않는 장점이 있다. 리아프노프 안정성기법에 의거하여 타켓 노드와 다른 노드들 사이의 동기화를 위한 새로운 적응제어기를 위한 조건을 유도한다. 마지막으로 제안된 기법의 효율성을 보이기 위하여 수치적인 예제를 제시한다.

자유로운 연결 구조를 갖는 복잡 동적망의 동기화 (Synchronization of a Complex Dynamical Network with Free Coupling Matrix)

  • 이태희;박주현;권오민;이상문
    • 전기학회논문지
    • /
    • 제60권8호
    • /
    • pp.1586-1591
    • /
    • 2011
  • This paper considers synchronization problem of a complex dynamical network. For the problem, the virtual target node is chosen as one of nodes in the complex network and only one connection is needed between an isolate target node and virtual target node not any more connections. Moreover, our synchronization scheme does not need additional conditions and information of coupling matrix comparing with existing works. Based on Lyapunov stability theory, a design criterion for a novel adaptive feedback controller for the synchronization between the isolate target node and another nodes of the complex network is proposed. Finally, the proposed method is applied to a numerical example in order to show the effectiveness of our results.

자율분산 신경망을 이용한 비선형 동적 시스템 식별 (Identification of nonlinear dynamical systems based on self-organized distributed networks)

  • 최종수;김형석;김성중;권오신;김종만
    • 대한전기학회논문지
    • /
    • 제45권4호
    • /
    • pp.574-581
    • /
    • 1996
  • The neural network approach has been shown to be a general scheme for nonlinear dynamical system identification. Unfortunately the error surface of a Multilayer Neural Networks(MNN) that widely used is often highly complex. This is a disadvantage and potential traps may exist in the identification procedure. The objective of this paper is to identify a nonlinear dynamical systems based on Self-Organized Distributed Networks (SODN). The learning with the SODN is fast and precise. Such properties are caused from the local learning mechanism. Each local network learns only data in a subregion. This paper also discusses neural network as identifier of nonlinear dynamical systems. The structure of nonlinear system identification employs series-parallel model. The identification procedure is based on a discrete-time formulation. Through extensive simulation, SODN is shown to be effective for identification of nonlinear dynamical systems. (author). 13 refs., 7 figs., 2 tabs.

  • PDF

Radial Basis 함수 회로망을 이용한 비선형 시스템 제어기의 설계에 관한 연구 (Design of nonlinear system controller based on radial basis function network)

  • 박경훈;이양우;차득근
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1996년도 한국자동제어학술회의논문집(국내학술편); 포항공과대학교, 포항; 24-26 Oct. 1996
    • /
    • pp.1165-1168
    • /
    • 1996
  • The neural network approach has been shown to be a general scheme for nonlinear dynamical system identification. Unfortunately the error surface of a Multilayer Neural Network(MNN) that widely used is often highly complex. This is a disadvantage and potential traps may exist in the identification procedure. The objective of this paper is to identify a nonlinear dynamical systems based on Radial Basis Function Networks(RBFN). The learning with RBFN is fast and precise. This paper discusses RBFN as identification procedure is based on a nonlinear dynamical systems. and A design method of model follow control system based on RBFN controller is developed. As a result of applying this method to inverted pendulum, the simulation has shown that RBFN can be used as identification and control of nonlinear dynamical systems effectively.

  • PDF

퍼지 클러스터링을 이용한 고농도오존예측 (Forecasting High-Level Ozone Concentration with Fuzzy Clustering)

  • 김재용;김성신;왕보현
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 2001년도 춘계학술대회 학술발표 논문집
    • /
    • pp.191-194
    • /
    • 2001
  • The ozone forecasting systems have many problems because the mechanism of the ozone concentration is highly complex, nonlinear, and nonstationary. Also, the results of prediction are not a good performance so far, especially in the high-level ozone concentration. This paper describes the modeling method of the ozone prediction system using neuro-fuzzy approaches and fuzzy clustering. The dynamic polynomial neural network (DPNN) based upon a typical algorithm of GMDH (group method of data handling) is a useful method for data analysis, identification of nonlinear complex system, and prediction of a dynamical system.

  • PDF

동적 뉴런을 갖는 신경회로망을 이용한 산업용 로봇의 지능제어 (Intelligent Control of Industrial Robot Using Neural Network with Dynamic Neuron)

  • 김용태
    • 한국공작기계학회:학술대회논문집
    • /
    • 한국공작기계학회 1996년도 추계학술대회 논문
    • /
    • pp.133-137
    • /
    • 1996
  • This paper presents a new approach to the design of neural control system using digital signal processors in order to improve the precision and robustness. Robotic manipulators have bevome increasingly important in the field of flexible automation. High speed and high-precision trajectory tracking arre indispensable capabilities for their versatile application. the need to meet demanding control requirement in increasingly complex dynamical control systems under sygnificant uncertainties leads toward design of implementing real time neural control to provide an enhanced motion control for robotic manipulators. In this control scheme the ntworks intrduced are neural nets with dynamic neurouns whose dynamics are distributed over all the network nodes. The nets are trained by the distributed dynamic are distributed over all the network nodes. The nets are trained by the distributed dynamic back propagation algorithm. The proposed neural network control scheme is simple in structure fast in computation and suitable for implementation of real-time control, Performance of the neural controller is illustrated by simulation and experimental results for a SCAEA robot.

  • PDF

DSP를 이용한 조립용 로봇의 실시간 신경회로망 제어기 설계 (Design of Real-Time Newral-Network Controller Based-on DSPs of a Assembling Robot)

  • 차보남
    • 한국공작기계학회:학술대회논문집
    • /
    • 한국공작기계학회 1999년도 추계학술대회 논문집 - 한국공작기계학회
    • /
    • pp.113-118
    • /
    • 1999
  • This paper presents a new approach to the design of neural control system using digital signal processors in order to improve the precision and robustness. Robotic manipulators have become increasingly important n the field of flexible automation. High speed and high-precision trajectory tracking are indispensable capabilities for their versatile application. The need to meet demanding control requirement in increasingly complex dynamical control systems under significant uncertainties, leads toward design of intelligent manipulation robots. The TMS320C31 is used in implementing real time neural control to provide an enhanced motion control for robotic manipulators. In this control scheme, the networks introduced are neural nets with dynamic neurons, whose dynamics are distributed over all the network nodes. The nets are trained by the distributed dynamic back propagation algorithm. The proposed neural network control scheme is simple in structure, fast in computation, and suitable for implementation of real-time control. Performance of the neural controller is illustrated by simulation and experimental results for a SCARA robot.

  • PDF

신경회로망을 이용한 산업용 매니퓰레이터의 견실성 해석 (Robustness Analysis of Industrial Manipulator Using Neural-Network)

  • 이진
    • 한국공작기계학회:학술대회논문집
    • /
    • 한국공작기계학회 1997년도 춘계학술대회 논문집
    • /
    • pp.125-130
    • /
    • 1997
  • In this paper, it is presents a new approach to the design of neural control system using digital signal processors in order to improve the precision and robustness. Robotic manipulators have become increasingly important in the field of flexible automation. High speed and high-precision trajectory tracking are indispensable capabilities for their versatile application. The need to meet demanding control requirement in increasingly complex dynamical control systems under significant uncertainties, leads toward design of intelligent manipulation robots. The TMS320C3x is used in implementing real time neural control to provide an enhanced motion control for robotic manipulators. In this control scheme, the networks introduced are neural nets with dynamic neurons, whose dynamics are distributed over all the network nodes. The nets are trained by the distributed dynamic back propagation algorithm. The proposed neural network control scheme is simple in structure, fast in computation, andsuitable for implementation of robust control.

  • PDF

동적 뉴런을 갖는 신경 회로망을 이용한 스카라 로봇의 실시간 제어 실현 (Implementation of a Real-Time Neural Control for a SCARA Robot Using Neural-Network with Dynamic Neurons)

  • 장영희;이강두;김경년;한성현
    • 한국공작기계학회:학술대회논문집
    • /
    • 한국공작기계학회 2001년도 춘계학술대회 논문집(한국공작기계학회)
    • /
    • pp.255-260
    • /
    • 2001
  • This paper presents a new approach to the design of neural control system using digital signal processors in order to improve the precision and robustness. Robotic manipulators have become increasingly important in the field of flexible automation. High speed and high-precision trajectory tracking are indispensable capabilities for their versatile application. The need to meet demanding control requirement in increasingly complex dynamical control systems under significant uncertainties, leads toward design of intelligent manipulation robots. The TMS320C31 is used in implementing real time neural control to provide an enhanced motion control for robotic manipulators. In this control scheme, the networks introduced are neural nets with dynamic neurons, whose dynamics are distributed over all the network nodes. The nets are trained by the distributed dynamic back propagation algorithm. The proposed neural network control scheme is simple in structure, fast in computation, and suitable for implementation of real-time control. Performance of the neural controller is illustrated by simulation and experimental results for a SCARA robot.

  • PDF

퍼지 클러스터링 이용한 고농도오존예측 (Forecasting High-Level Ozone Concentration with Fuzzy Clustering)

  • 김재용;김성신;왕보현
    • 한국지능시스템학회논문지
    • /
    • 제11권4호
    • /
    • pp.336-339
    • /
    • 2001
  • 오존농도 메커니즘은 매우 복잡하고, 비선형성과 비정상성이 강하기 때문에 오존 예보시스템들은 많은 문제점을 가지고 있다. 특히 고농도 오존에 있어서 예측결과들이 성능이 좋지 않다. 본 논문은 뉴로-퍼지기법과 퍼지 클러스터링을 이용한 오존 예측시스템의 모델링 방법을 설명하고자 한다. GMDH의 전형적인 알고리즘에 기초한 동적 다항식 신경망은 데이터 분석, 비선형적이고 복잡한 시스템의 검증 그리고 동적 시스템의 예측을 위한 유용한 방법이다.

  • PDF