• 제목/요약/키워드: complete quasi b-metric space

검색결과 3건 처리시간 0.018초

QUASI-ISOMETRIC AND WEAKLY QUASISYMMETRIC MAPS BETWEEN LOCALLY COMPACT NON-COMPLETE METRIC SPACES

  • Wang, Xiantao;Zhou, Qingshan
    • 대한수학회보
    • /
    • 제55권3호
    • /
    • pp.967-970
    • /
    • 2018
  • The aim of this paper is to show that there exists a weakly quasisymmetric homeomorphism $f:(X,d){\rightarrow}(Y,d^{\prime})$ between two locally compact non-complete metric spaces such that $f:(X,d_h){\rightarrow}(Y,d^{\prime}_h)$ is not quasi-isometric, where dh denotes the Gromov hyperbolic metric with respect to the metric d introduced by Ibragimov in 2011. This result shows that the answer to the related question asked by Ibragimov in 2013 is negative.

NONLINEAR CONTRACTIONS IN PARTIALLY ORDERED QUASI b-METRIC SPACES

  • Shah, Masood Hussain;Hussain, Nawab
    • 대한수학회논문집
    • /
    • 제27권1호
    • /
    • pp.117-128
    • /
    • 2012
  • Using the concept of a g-monotone mapping we prove some common fixed point theorems for g-non-decreasing mappings which satisfy some generalized nonlinear contractions in partially ordered complete quasi b-metric spaces. The new theorems are generalizations of very recent fixed point theorems due to L. Ciric, N. Cakic, M. Rojovic, and J. S. Ume, [Monotone generalized nonlinear contractions in partailly ordered metric spaces, Fixed Point Theory Appl. (2008), article, ID-131294] and R. P. Agarwal, M. A. El-Gebeily, and D. O'Regan [Generalized contractions in partially ordered metric spaces, Appl. Anal. 87 (2008), 1-8].

GENERALIZED m-QUASI-EINSTEIN STRUCTURE IN ALMOST KENMOTSU MANIFOLDS

  • Mohan Khatri;Jay Prakash Singh
    • 대한수학회보
    • /
    • 제60권3호
    • /
    • pp.717-732
    • /
    • 2023
  • The goal of this paper is to analyze the generalized m-quasi-Einstein structure in the context of almost Kenmotsu manifolds. Firstly we showed that a complete Kenmotsu manifold admitting a generalized m-quasi-Einstein structure (g, f, m, λ) is locally isometric to a hyperbolic space ℍ2n+1(-1) or a warped product ${\tilde{M}}{\times}{_{\gamma}{\mathbb{R}}$ under certain conditions. Next, we proved that a (κ, µ)'-almost Kenmotsu manifold with h' ≠ 0 admitting a closed generalized m-quasi-Einstein metric is locally isometric to some warped product spaces. Finally, a generalized m-quasi-Einstein metric (g, f, m, λ) in almost Kenmotsu 3-H-manifold is considered and proved that either it is locally isometric to the hyperbolic space ℍ3(-1) or the Riemannian product ℍ2(-4) × ℝ.