• 제목/요약/키워드: compensator.

Search Result 1,347, Processing Time 0.031 seconds

Dynamic Characteristic Analysis of SSSC Based on Multi-bridge PAM Inverter

  • Han Byung-Moon;Kim Hee-Joong;Baek Seung-Taek
    • Proceedings of the KIPE Conference
    • /
    • 2001.10a
    • /
    • pp.539-545
    • /
    • 2001
  • This paper proposes a static synchronous series compensator based on multi-bridge inverter. The proposed system consists of 6 H-bridge modules per phase, which generate 13 pulses for each half period of power frequency. The dynamic characteristic was analyzed by simulations with EMTP code, assuming that it is inserted in the 154-kV transmission line of one-machine-infinite-bus power system. The feasibility of hardware implementation was verified through experimental works using a scaled model. The proposed system does not require a coupling transformer for voltage injection, and has flexibility in expanding the operation voltage by increasing the number of H-bridge modules.

  • PDF

Study on Speed Ripple Reduction Algorithm in Sensorless Controlled IPMSM (IPMSM 센서리스 제어에서의 속도리플저감 알고리즘에 관한 연구)

  • Lee, Song-Cheol;Jung, Young-Seok
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.21 no.3
    • /
    • pp.249-253
    • /
    • 2016
  • In this study, a harmonic-pulsation-compensator (HPC) is presented to reduce a periodic speed ripple in IPMSM. A proportional-integral compensator in HPC is proposed instead of the existing integral compensator to reduce the speed ripple more rapidly. A formula to calculate a rotation angle is also proposed, making compensation optimal in sensored and sensorless controls. The validity of the proposed algorithm is verified by experiments.

Robust regulator design for an interval plant (구간 플랜트에 대한 견실한 레귤레이타 설계)

  • 김기두;김석중
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1993.10a
    • /
    • pp.173-178
    • /
    • 1993
  • In this paper, we present an algorithmic technique for determining a feedback compensator which will stabilize the interval dynamic system, specifically, the robust regulator design for interval plants. The approach taken here is to allow the system parameters to live within prescribed intervals then design a dynamic feedback compensator which guarantees closed-loop system stable. The main contribution of this paper is the idea of introducing a "simplified Kharitonov's result" for low order polynomials to search for suitable compensator parameters in the compensator parameter space to make the uncertain syste robust. We also design the robust regulator which will D-stabilize (have the closed-loop poles in the left sector only) the dynamic interval system while having good performance. The nuerical examples are given to show the substantially improved robustness which results from our approach. approach.

  • PDF

Roll/yaw controller design using double gimbaled momentum wheel (더블김벌 모멘텀휠을 이용한 롤/요 제어기 설계)

  • 박영웅;방효충
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10b
    • /
    • pp.1099-1102
    • /
    • 1996
  • In this paper, roll/yaw attitude control of spacecraft using a double gimbaled wheel is discussed with two feedback controllers designed. One is a PD controller with no phase difference between roll and yaw control input. The other is a PD controller with a phase lag compensator about the yaw control input. The phase lag compensator is designed as a first order system and a lag parameter is designed for the yaw angle control. There are two case simulations for each controller ; constant disturbance torques and initial errors of nutation at motion. We obtain the results through simulations that steady-state error and rising time of yaw angle are determined by the compensator. Simulation parameters used in this study are the values of KOREASAT F1.

  • PDF

Design of Fuzzy Compensator for Compensate Backlash in Gear (기어의 백래쉬 보상을 위한 퍼지 보상기 설계)

  • KIM Nam boon;HUH Uk youl;KIM Jin geol;KIM Byung yoon
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.53 no.12
    • /
    • pp.799-803
    • /
    • 2004
  • In rotating systems, backlash impose limitations on the quality of control. System with gear is an example where this is a well-known limitation. In order to increase the controller performance, we design a fuzzy system to compensate the backlash effect. We prove that under certain conditions the fuzzy compensator guarantees that the backlash output converges to the desired trajectory. Simulation results show that the fuzzy compensator is robust to the backlash parameter.

Damping Control Strategy and Analysis Model of Static Synchronous Series Compensator(SSSC) (Static Synchronous Series Compensator(SSSC) 댐핑 제어 및 해석모형)

  • Kim, Hak-Man;Chun, Yeong-Han;Oh, Tae-Kyoo
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.49 no.10
    • /
    • pp.509-515
    • /
    • 2000
  • This paper addresses a damping control strategy of Static Synchronous Series Compensator(SSSC) and analysis model for stability study. The effect of injected voltage source generated by SSSC is modelled as equivalent load. This model is thought to be reasonable for the stability study because the dynamics of SSSC is very fast compared with that of power system. Damping controller of SSSC is based on Transient Energy Function method. The proposed control strategy is insensitive to the operating conditions like power flow level because control law depends on the phase angles. The proposed analysis model and control strategy was confirmed by WSCC 9 bus system and two area system. Especially, the robustness of proposed control strategy is demonstrated with respect to multiple operating conditions in two area system.

  • PDF

A Study on the Adaptive Friction Compensator Design of a Hydraulic Proportional Position Control System (유압 비례 위치제어시스템의 적응 마찰력 보상기 설계에 관한 연구)

  • 이명호;박형배
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.12 no.6
    • /
    • pp.77-83
    • /
    • 2003
  • This paper deals with a position control problem of a hydraulic proportional position control system using a nonlinear friction compensation control. As nonlinear friction, stiction and coulomb friction forces are considered and modeled as deadzone and external disturbance respectively. In order to compensate this nonlinearities, we designed the controller which is the adaptive friction compensator using discrete time Model Reference Adaptive Control method in this paper. Digital Signal Processing board is employed for data acquisition and manipulation. The experimental results show that response is slow and steady-state error cannot be compensated properly without friction compensation but this compensator is effective to obtain fast response and good steady-state response.

Proposal and Development of A Cylinder Type Liquid Variable Compensator for Radiation Therapy

  • Ochiai, Makoto;Takahashi, Seiji;Takada, Yuusuke;Hayakawa, Yoshinori
    • Proceedings of the Korean Society of Medical Physics Conference
    • /
    • 2002.09a
    • /
    • pp.222-224
    • /
    • 2002
  • In proton and heavy ion radiotherapy, compensators are required to modify the energy of heavy ion, to compensate the local difference of tumor depth. Conventional compensators have to be created, exchanged, and stored for each patient and for each irradiation directions. A Cylinder Type Liquid Variable Compensator is and is under development. Hexagonal cylinders will be arranged in honeycomb structure. In which air and fluid are divided by hexagonal pistons. The position of each piston will be changed in each cylinder for adjusting the thickness of fluid for variable compensator. The location of each hexagonal piston is determined by each controlling cylinder connected to the hexagonal cylinder by inlet pipes of fluid. Each controlling cylinder includes controlling a piston, which is moved mechanically. Each controlling cylinder is to be moved by a motor driven by a computer.

  • PDF

The Control of Flexible Beam using Nonlinear Compensator with Dual-Input Describing Function (쌍입력 기술함수를 갖는 비선형 보상기를 이용한 유연한 빔의 제어)

  • 권세현;이형기;최부귀
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.4 no.5
    • /
    • pp.644-650
    • /
    • 1998
  • In this paper , a state space model for flexible beam is presented using the assumed-modes approach. The state space equation is derived for a flexible beam in which one end is connected to a motor and is driven by a torque equation and the other end is free. Many of the transfer function proposed thus far use the torque to the flexible beam as the input and the tip deflection of the flexible beam as the output. The Technique for the analysis and synthesis of the dual-input describing function(DIDF) is introduced here and the construction of a non-linear compensator, based on this technique, is proposed. This non-linear compensator, properly connected in the direct path of a closed-loop linear or non-linear control system. The above non-linear network is used to compensate linear and non-linear systems for instability, limit cycles, low speed of response and static accuracy. The effectiveness of the proposed scheme is demonstrated through computer simulation and experimental results.

  • PDF

A transmissive dispersion compensator based on tilted chirped fiber Bragg grating pairs (경사진 처프된 광섬유격자쌍에 기반을 둔 투과형 분산보상기)

  • Lee, Jong-Hun
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.44 no.4
    • /
    • pp.18-23
    • /
    • 2007
  • This paper presents a transmissive dispersion compensator based on tilted chirped fiber Bragg grating pairs which happen mode coupling between core mode and cladding mode. And, as a result of simulation, the phase matching condition and optimum tilted angle to maximize the mode-coupling in the dispersion compensator are shown and the dispersion slope and bandwidth in the proposed dispersion compensator is respectively 3,068ps/nm and 0.45nm.