• Title/Summary/Keyword: compensator

Search Result 1,349, Processing Time 0.027 seconds

Modelling and LQG/LTR Compensator Design of the Seeker Scan-Loop (탐색기의 주사루프 모델링과 LQG/LTR보상기 설계)

  • 황홍연;이호평
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.17 no.11
    • /
    • pp.2730-2741
    • /
    • 1993
  • A mathematical model of the seeker scan-loop which is composed of a spin-stabilized gyroscope and its driving signal processors is derived. The derived model has a transmission zero pair on the imaginary axis near to the required bandwidth. The LQG/LTR design methodology is evolved for the derived scan-loop model. To implement the designed LQG/LTR compensator to the actual plant, the compensator order is reduced using the internally balanced realization method. The performances of the LQG/LTR compensator are tested and compared with those of the P-control. Especially, stability-robustnessexperiments for model uncertainties represented in the form of time-delays are performed. It is demonstrated that the LQG/STR compensator is actually very robust to model uncertainties.

An optimal discrete-time feedforward compensator for real-time hybrid simulation

  • Hayati, Saeid;Song, Wei
    • Smart Structures and Systems
    • /
    • v.20 no.4
    • /
    • pp.483-498
    • /
    • 2017
  • Real-Time Hybrid Simulation (RTHS) is a powerful and cost-effective dynamic experimental technique. To implement a stable and accurate RTHS, time delay present in the experiment loop needs to be compensated. This delay is mostly introduced by servo-hydraulic actuator dynamics and can be reduced by applying appropriate compensators. Existing compensators have demonstrated effective performance in achieving good tracking performance. Most of them have been focused on their application in cases where the structure under investigation is subjected to inputs with relatively low frequency bandwidth such as earthquake excitations. To advance RTHS as an attractive technique for other engineering applications with broader excitation frequency, a discrete-time feedforward compensator is developed herein via various optimization techniques to enhance the performance of RTHS. The proposed compensator is unique as a discrete-time, model-based feedforward compensator. The feedforward control is chosen because it can substantially improve the reference tracking performance and speed when the plant dynamics is well-understood and modeled. The discrete-time formulation enables the use of inherently stable digital filters for compensator development, and avoids the error induced by continuous-time to discrete-time conversion during the compensator implementation in digital computer. This paper discusses the technical challenges in designing a discrete-time compensator, and proposes several optimal solutions to resolve these challenges. The effectiveness of compensators obtained via these optimal solutions is demonstrated through both numerical and experimental studies. Then, the proposed compensators have been successfully applied to RTHS tests. By comparing these results to results obtained using several existing feedforward compensators, the proposed compensator demonstrates superior performance in both time delay and Root-Mean-Square (RMS) error.

A study on tissue compensator thickness ratio and an application for 4MV X-rays (4MV X-선을 이용한 조직보상체 두께비 연구 및 응용)

  • Kim Young-Bum;Jung Hee-Young;Kweon Young-Ho;Kim You-Hyun
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.8 no.1
    • /
    • pp.55-61
    • /
    • 1996
  • A radiation beam incident on irregular or sloping surface produces an inhomogeneity of absorbed dose. The use of a tissue compensator can partially correct this dose inhomogeneity. The tissue compensator should be made based on experimentally measured thickness ratio. The thickness ratio depends on beam energy, distance from the tissue compensator to the surface of patient, field size, treatment depth, tissue deficit and other factors. In this study, the thickness ratio was measured for various field size of $5cm{\times}5cm,\;10cm{\times}10cm,\;15cm{\times}15cm,\;20cm{\times}20cm$ for 4MV X-ray beams. The distance to the compensator from the X-ray target was fixed, 49cm, and measurement depth was 3, 5, 7, 9 cm. For each measurement depth, the tissue deficit was changed from 0 to(measurement depth-1)cm by 1cm increment. As a result, thickness ratio was decreased according to field size and tissue deficit was increased. Use of a representative thickness ratio for tissue compensator, there was $10\%$ difference of absorbed dose but use of a experimentally measured thickness ratio for tissue compensator, there was $2\%$ difference of absorbed dose. Therefore, it can be concluded that the tissue compensator made by experimentally measured thickness ratio can produce good distribution with acceptable inhomogeneity and such tissue compensator can be effectively applied to clinical radiotherapy.

  • PDF

Study on Robot Manipulator applying the Gravity Compensator (중력 보상기를 적용한 로봇 매니퓰레이터 연구)

  • Choi, Hyeung-Sik;Hur, Jae-Gwan;Seo, Hae-Yong;Hong, Sung-Yul
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.34 no.2
    • /
    • pp.267-274
    • /
    • 2010
  • In this paper, the structure of a gravity compensator was studied, and the 6-axis robot manipulator which is newly developed by applying the gravity compensator is presented to improve the torque performance of the robot joint. The kinematics analysis on the robot was presented. Also, a simulation of the performance of the joint actuator of robot adopting the gravity compensator was presented by applying various springs. According to the simulation results, it was validated that the payload effect on the robot joint actuator adopting the gravity compensator is reduced in proportion to the spring intensity of the gravity compensator.

Study of a Gravity Compensator for the Lower Body (중력보상기 기반의 하지용 외골격 장치 설계 연구)

  • Choi, Hyeung-Sik;Kim, Dong-Ho;Jeon, Ji-Kwang
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.28 no.4
    • /
    • pp.455-462
    • /
    • 2011
  • This paper is about the design of a new gravity compensator for the lower body exo-skeleton device. The exo-skeleton devices is for increasing the torque of the human body joint for the purpose of helping the disabled, workers in the industry, and military soldiers. So far, most of studied exo-skeleton devices are actuated by the motors, but motors are limited in energy such that a short durability is always a big problem. In this paper, a new gravity compensator is proposed to reduce the torque load applied to human body joints due to gravity. The gravity compensator is designed using a tortional bar spring, and its structure and characteristics are studied through the test and computer simulation. A design concept on the exo-skeleton device using the gravity compensator is presented. An analysis and computer simulation on the torque reduction of the proposed exo-skeleton device that applies and non-applies the gravity compensator are performed.

A New Control Scheme of the Line-Interactive UPS Using the Series Active Compensator (직렬 능동 보상기를 이용한 Line-Interactive UPS의 새로운 제어 기법)

  • Jang, Hoon;Lee, Woo-Cheol;Hyun, Dong-Seok
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.52 no.8
    • /
    • pp.405-412
    • /
    • 2003
  • This paper presents a three-phase Line-Interactive uninterruptible power supply (UPS) system with series-parallel active power-line conditioning capabilities, using synchronous reference frame (SRF) based controller, which allows an effective power factor correction, source harmonic voltage compensation, load harmonic current suppression, and output voltage regulation. The three-phase UPS system consists of two active power compensator topologies. One is a series active compensator, which works as a voltage source in phase with the source voltage to have the sinusoidal source current and high power factor under the deviation and distortion of the source voltage. The other is a parallel active compensator which works as a conventional sinusoidal voltage source in phase with the source voltage, providing to the load a regulated and sinusoidal voltage with low THD (total harmonic distortion). The control algorithm using SRF method and the active power flow through the Line-interactive UPS systems are described and studied. The simulation and experimental results are depicted in this paper to show the effect of the proposed algorithm.

Design of fuzzy compensator for compensate the backlash effect (백래쉬 현상의 보상을 위한 퍼지 보상기 설계)

  • Kim, Nam-Hoon;Huh, Uk-Youl;Kim, Jin-Geol;Kim, Byung-Yoon
    • Proceedings of the KIEE Conference
    • /
    • 2004.11c
    • /
    • pp.751-753
    • /
    • 2004
  • In rotating systems, backlash imposed limitations on the quality of control. System with gear is an example where this is a well-known limitation. In order to increase the controller performance, we design a fuzzy system to compensate the backlash effect. We prove that under certain conditions the fuzzy compensator guarantees that the backlash output converges to the desired trajectory. Simulation results show that the fuzzy compensator is robust to the backlash parameter.

  • PDF

Series-Parallel Compensated Uninterruptible Power Supply (직병렬 보상형 무정전 전원장치에 관한연구)

  • Jeon, Seong-Jeub;Cho, Gyu-Hyeong
    • Proceedings of the KIEE Conference
    • /
    • 1996.07a
    • /
    • pp.300-302
    • /
    • 1996
  • In this paper a new series-parallel compensated uninterruptible power supply is proposed. Its series compensator shapes input current to sinusoid. The power handled by series compensator is only a quarter of ratings. And parallel compensator delivers sinusoidal voltage to nonlinear load. The parallel compensator is backedup with battery. This system has capabilities of power line conditioner and backup power with reduced size.

  • PDF

Sag Voltage Compensator using Diode Rectifier and Series Inverter (다이오드 정류기와 인버터를 이용한 순간 전압 강하 보상기)

  • 이준기;박덕희;김희중;한병문;소용철
    • Proceedings of the KIPE Conference
    • /
    • 1999.07a
    • /
    • pp.448-451
    • /
    • 1999
  • This paper describes controller development for a dynamic voltage compensator using a shunt diode converter and series inverter. The control system was designed using 1/4 period integrator and vector relationship between the supply voltage and load voltage. A simulation model and scaled hardware model were developed for analyzing performance of the controller and the whole system. Both results confirm that the dynamic compensator can restore the load voltage under the fault of the distribution system.

  • PDF

A novel anti-windup compensation for systems with saturating actuator (포화 요소가 있는 계를 위한 와인드업 방지 보상 방법)

  • 장원욱;박영진
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1991.10a
    • /
    • pp.299-304
    • /
    • 1991
  • A novel approach based on a nonlinear compensator is proposed to prevent 'windup', which is caused by the saturation of the actuator and the integration action of the controller. The anti-windup compensator is located between the conventional linear controller, designed neglecting the saturation, and the actuator. It was proven based on the describing function method that, if the closed loop control systems are stable assuming no saturation, then there exist a range of compensator gain which prevents any limit-cycle and hence, guarantees the system stability. The computer simulation results show that the compensator proposed in the manuscript can eliminate unstable limit cycle and improve the transient response.

  • PDF