• Title/Summary/Keyword: compensator

Search Result 1,347, Processing Time 0.025 seconds

A Study on DC Changing Algorithm of the Line-Interactive UPS with Dual Converter Structure (2중 컨버터 구조를 갖는 계통 연계형 UPS의 DC 충전 알고리듬에 관한 연구)

  • Lee, Woo-Cheol;Yoo, Dong-Sang
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.19 no.3
    • /
    • pp.27-34
    • /
    • 2005
  • This paper presents a three phase Line-Interactive uninterruptible power supply(UPS) system with dual converter structure. The three phase UPS system consists of two active power compensator topologies. One is a series active compensator, which works as a voltage source in phase with the source voltage to have the sinusoidal source current and high power factor under the deviation and distortion of the source voltage. The other is a parallel active compensator, which works as a conventional sinusoidal voltage source in phase with the source voltage, providing to the load a regulated and sinusoidal voltage with low total harmonic distortion(THD). This paper presents in the series and parallel active compensator charging method depending on the amplitude of the source voltage. The conventional Line-Interactive UPS system is responsible for the DC charging and output voltage regulation at the same time, but UPS system with dual converter structure, a series active compensator can also charge the DC link. Therefore the charging algorithm using the series and parallel compensator needs to be researched. Therefore, by making the DC link voltage stable it can contribute the stability of series and parallel compensator. The simulation and experimental result are depicted in this paper to show the effect of the proposed algorithm.

A Study on the Soiution of Inverse Kinematic of Manipulator using Self-Organizing Neural Network and Fuzzy Compensator (퍼지 보상기와 자기구성 신경회로망을 이용한 매니퓰레이터의 역기구학 해에 관한 연구)

  • 김동희;이수흠;신위재
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.2 no.3
    • /
    • pp.79-85
    • /
    • 2001
  • We obtain a solution of inverse kinematic of 3 axis manipulator by using a self-organizing neral network(SONN) with a fuzzy compensator. The self-organizing neural network using the gaussian potential function as the activation function has one hidden layer in the first learning time. The network obtains the optimal number of node by increasing the number of hidden layer node through the learning, and the fuzzy compensator has the optimal loaming rate of neutral network. In this results, we can confirmed that the learning rate is improved and the rapid convergence to the steady-state.

  • PDF

An Integration Type Adaptive Compensator for a Class of Linearly Parameterized Systems (선형 파라미터화된 시스템에 대한 적분형 적응보상기)

  • Yoo Byung-Kook;Yang Keun-Ho
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.6 no.2
    • /
    • pp.82-88
    • /
    • 2005
  • A compensation scheme for a class of linearly parameterized systems is presented. The compensator consists of a typical linearizing control and an adaptive observer with integration type update law, which is based on Speed Gradient (SG) algorithm.. Instead of the intermediate functions of the compensation schemes suggested by other researchers, the proposed compensator is designed with some design functions which guarantee the growth, convexity, attainability, and pseudo gradient conditions in the update law. The scheme achieves the asymptotic stability of the tracking error and the boundedness of the estimation errors. A numerical example is given to demonstrate the validity of the proposed design.

  • PDF

A Study on the Characteristics of Thyristor Controlled Shunt Compensator (싸이리스터제어 병렬보상기의 특성 연구)

  • 정교범
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.4 no.4
    • /
    • pp.368-376
    • /
    • 1999
  • This paper studies the operational characteristics of thyristor controlled shunt compensator in a simple power t transmission system. With Fourier series representation of the thyristor switching action and the system parameters, t the thyristor current equations are derived, which transmit the required real power of the simple power transmission s system. Bisection algorithm is used to solve the thyristor current equations, which informs the thyristor firing an밍e, t the thyristor conduction an밍e, the power flows and the harmonic characteristics. The stability analysis is performed w with the theory of Poincare mapping for the nonlinear discrete periodic dynamic system. EMTP simulations at the v various operating points show the transient characteristics of the thyristor controlled shunt compensator and C correspond to the results calculated with Fourier series representation and the stability analysis.

  • PDF

An Anti-Windup Compensation for Systems with Saturation Actuators (포화 요소가 있는 계를 위한 와인드업 방지 보상 방법)

  • 장원욱;박영진
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.16 no.7
    • /
    • pp.1332-1340
    • /
    • 1992
  • A novel approach based on a nonlinear compensator is prposed to prevent 'windup', which is caused by the saturation of the acutator and the integral action of the controller. The anti-windup compensator is located between the conventional linear controller, designed neglecting the saturation, and the actuator. It was proven based on the describing function method that, if the closed loop control systems are stable assuming no saturation, then there may exist a range of compensator gain which prevents any limit-cycle. The computer simulation results show that the compensator proposed in the manuscript can eliminate the limit cycle and improve the transient response.

Experimental Study of the Robot Arm Applying the Gravity Compensator (중력보상기를 적용한 로봇 팔의 실험적 연구)

  • Choi, Hyeung-Sik;Seo, Hae-Yong;Uhm, Tai-Woong;Yoon, Jong-Su
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.35 no.1
    • /
    • pp.60-67
    • /
    • 2011
  • In this paper, the structure of a gravity compensator(GC) was studied, and the 6-axis robot manipulator which is newly developed by applying the GC is presented to improve the torque performance and repeatability error of the robot joint. The kinematics analysis on the robot was presented. Also, experiments of the performance of the joint actuator of robot adopting the gravity compensator were presented by the GC to $1^{st}$ and $2^{nd}$ joints of the robot arm. According to the experiment results, it was validated that the position errors and load torque of the robot joint actuator adopting the GC are reduced significantly.

Attitude Controller Design for a Bias Momentum Satellite with Double Gimbal (더블김벌을 장착한 바이어스 모멘텀 위성의 자세제어기 설계)

  • Park, Young-Woong;Bang, Hyo-Choong
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.32 no.4
    • /
    • pp.34-42
    • /
    • 2004
  • In this paper, a double gimbal is used for roll/yaw attitude control of spacecraft and two feedback controllers are designed. One is a PD controller of no phase difference between roll and yaw control input. The other is a PD controller with a phase lag compensator about the yaw control input. The phase lag compensator is designed a first order system and a lag parameter is designed for the control of yaw angle. There are two case simulations for each of controllers; constant disturbance torques and initial errors of nutation. We obtain the results through simulations that a steady-state error and a rising time of yaw angle are developed by the compensator. In this paper, simulation parameters use the values of KOREASAT 1.

Flight control of a small unmanned aerial vehicle using a dynamic compensator (동적 보상기를 이용한 소형 무인항공기 비행 제어)

  • Kim, Heui-Joo;Kim, Jea-Wook;Lee, Kang-Woong
    • Journal of Advanced Navigation Technology
    • /
    • v.16 no.4
    • /
    • pp.571-577
    • /
    • 2012
  • In this paper, we design a flight controller using a dynamic compensator for a small unmanned aerial vehicle. The proposed method ensures flight stability during altitude holding and waypoints passing by improving the transient response and steady state error. The control system consists of dual feedback loops with an inner loop and a outer loop. The inner loop has a PD controller to improves the transient response and the outer loop has a dynamic compensator to reduce overshoot in the transient response and improve the steady state error. The performance of the proposed method is evaluated by flight test on a small UAV.

Trajectory control of direct drive robot using two-degrees-of-freedom compensator

  • Shin, Jeong-Ho;Fujiune, Kenji;Suzuki, Tatsuya;Okuma, Shigeru;Yamada, Koji
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1994.10a
    • /
    • pp.422-427
    • /
    • 1994
  • In this paper, we propose a new design approach of a two-degrees-of-freedom compensator which assures the robust stability. First of all, we clarify the internal structure of the generalized two-degrees-of-freedom compensator. By adopting this structure, we can make a bridge between the generalized controller and the disturbance observer based controller, Secondly, based on the clarified structure we derive a robust stability condition, and propose a design algorithm of free parameter taking the condition into account. The proposed design algorithm is easy to implement and, as a result, we obtain lower order free parameter then that of the conventional design algorithm.. Thirdly, we show by adopting an appropriate coprime factorization that the clarified structure can also be regarded as an extended version of the conventional PID compensator. Finally, we apply the proposed algorithm to a three-degrees-of freedom direct drive robot, and show some experimental results to verify the effectiveness of the proposed algorithm.

  • PDF

The Design of Control Algorithm for Unified Power Quality Compensator (3상 직병렬보상형 전력품질 보상장치(UPQC)의 제어 알고리즘 설계)

  • Jeon Jin Hong;Kim Tae Jin;Ryoo Hong Je;Kim Hwang Su
    • Proceedings of the KIEE Conference
    • /
    • summer
    • /
    • pp.351-353
    • /
    • 2004
  • In recent years, customers and power supplies are interested in power quality. Demands of customers are change from standard quality of distribution power system to various high quality of distribution power system. so, it is necessary to apply power quality compensator. in our project, we develop the UPQC(Unfied Power Quality Compensator of 45kVA which compensates power factor and voltage sag, interruption. it is very frequently occurred power quality $problems^{[1-3]}$ As a series and shunt compensator, UPQC consists of two inverters with common do link capacitor bank. It compensates the current quality in the shunt part and the voltage quality in the series part. In this paper, we present the design and control algorithm for 4SkVA UPQC system. As a control algorithm is implemented by digital controller, we consider sample-and-hold of signals. In this simulation, we use EMTDC/PSCAD V3.0 software which can simulate instantaneous voltage and current.

  • PDF