• Title/Summary/Keyword: compensation of modeling

Search Result 282, Processing Time 0.034 seconds

Analysis, Modeling and Compensation of Dynamic Imbalance Error for a Magnetically Suspended Sensitive Gyroscope

  • Xin, Chaojun;Cai, Yuanwen;Ren, Yuan;Fan, Yahong;Xu, Guofeng;Lei, Xu
    • Journal of Magnetics
    • /
    • v.21 no.4
    • /
    • pp.529-536
    • /
    • 2016
  • Magnetically suspended sensitive gyroscopes (MSSGs) provide an interesting alternative for achieving precious attitude angular measurement. To effectively reduce the measurement error caused by dynamic imbalance, this paper proposes a novel compensation method based on analysis and modeling of the error for a MSSG. Firstly, the angular velocity measurement principle of the MSSG is described. Then the analytical model of dynamic imbalance error has been established by solving the complex coefficient differential dynamic equations of the rotor. The generation mechanism and changing regularity of the dynamic imbalance error have been revealed. Next, a compensation method is designed to compensate the dynamic imbalance error and improve the measurement accuracy of the MSSG. The common issues caused by dynamic imbalance can be effectively resolved by the proposed method in gyroscopes with a levitating rotor. Comparative simulation results before and after compensation have verified the effectiveness and superiority of the proposed compensation method.

Robust Friction Compensation Control Using a Nonliner Observer

  • Nakamura, Yuichiro;Niwa, Shohei
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.108.5-108
    • /
    • 2001
  • The research of friction compensation control system seeks the accuracy, the velocity increase of the table, and the settling time reduction. The friction is the disturbance which has the greatest influence, but the past research of control system doesn´t perform exact modeling of the friction. So this research aims at the friction compensation control system, the exact modeling of the friction, comparison between the model simulation and experimental data, and the design of observer for the friction estimation.

  • PDF

Improvement of line Current using Instantaneous Real Power Compensation of DSTATCOM (DSTATCOM의 순시 유효전력 보상을 이용한 선로의 전류 개선)

  • Jeong, Su-Yeong;Kim, Tae-Hyeon;Mun, Seung-Il;Gwon, Uk-Hyeon
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.51 no.7
    • /
    • pp.327-332
    • /
    • 2002
  • In this paper, conventional reactive power compensation is defined and instantaneous real control concept for shunt converters is proposed. This equipment incorporates the compensation function of harmonics at the distribution line by nonlinear load. These methodologies are applied to IEEE 13 distribution system with the modeling of nonlinear load using EMTEDC/PSCAD package. Simulation with EMTDC results presented to confirm that the new approach has better performance than those obtained by controllers based on traditional concepts of reactive power compensation.

Modeling and Analysis of Buck LED Driver with Slope Compensation (Slope 보상을 가진 벅 LED 구동기의 모델링 및 해석)

  • Kim, Marn-Go;Jung, Young-Seok;Kim, Nam-Ho
    • Proceedings of the KIPE Conference
    • /
    • 2017.07a
    • /
    • pp.98-99
    • /
    • 2017
  • A discrete time domain modeling for the current-mode-controlled buck LED driver is presented in this paper. Based on the modeling result, a root locus analysis for the buck LED driver with slope compensation is done to derive the stability boundaries of feedback gains.

  • PDF

A Study on deformation compensation of press part based on reverse engineering (역공학기반의 프레스 부품 변형 보정에 관한 연구)

  • Kim, Kwang-Hee;Lee, Yun-Young
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.1
    • /
    • pp.28-32
    • /
    • 2013
  • In this study, we suggested new method for compensation on spring back of press part. At first, we compared between error on CAD data and scanning data. The new method can be substituted for manual modeling process in compensation on spring back. The new method is available for automatic modeling based on 3D scanning data. From the study, the results expect that time and cost reduction for process applying new method for compensation on spring back of press part.

A Design on Multivariable Controller for Industrial Robot Manipulators (산업용 로봇 매니퓰레이터의 다변수 제어기 설계)

  • 한상완;홍석교
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.4 no.5
    • /
    • pp.636-643
    • /
    • 1998
  • This paper is presents multivariable control scheme for industrial robot manipulators. The control scheme consists of two loops. The modeling error between linearized robot model and actual robot model is compensated in error compensation loop. The PID control loop is designed for pole assignment to stability of robot system and utilized for trajectory tracking. Alternatively computer simulation results are given for illustration purpose of suggested controller.

  • PDF

Sampled-Data Modeling and Dynamic Behavior Analysis of Peak Current-Mode Controlled Flyback Converter with Ramp Compensation

  • Zhou, Shuhan;Zhou, Guohua;Zeng, Shaohuan;Xu, Shungang;Cao, Taiqiang
    • Journal of Power Electronics
    • /
    • v.19 no.1
    • /
    • pp.190-200
    • /
    • 2019
  • The flyback converter, which can be regarded as a nonlinear time-varying system, has complex dynamics and nonlinear behaviors. These phenomena can affect the stability of the converter. To simplify the modeling process and retain the information of the output capacitor branch, a special sampled-data model of a peak current-mode (PCM) controlled flyback converter is established in this paper. Based on this, its dynamic behaviors are analyzed, which provides guidance for designing the circuit parameters of the converter. With the critical stability boundary equation derived by a Jacobian matrix, the stable operation range with a varied output capacitor, proportional coefficient of error the amplifier, input voltage, reference voltage and slope of the compensation ramp of a PCM controlled flyback converter are investigated in detail. Research results show that the duty ratio should be less than 0.5 for a PCM controlled flyback converter without ramp compensation to operate in a stable state. The stability regions in the parameter space between the output capacitor and the proportional coefficient of the error amplifier are enlarged by increasing the input voltage or by decreasing the reference voltage. Furthermore, the ramp compensation also can extend to the stable region. Finally, time-domain simulations and experimental results are presented to verify the theoretical analysis results.

A Study on Voltage Drop Compensation by STATCOM Considering Dynamic Characteristics of the 3-Phase Induction Motor in Electric Railway Systems (전기철도 3상유도전동기의 기동특성을 고려한 STATCOM에 의한 전압강하 보상에 관한연구)

  • Hwang, Sung-Ho;Oh, Min-Hyuk;Lee, Byung-Ha
    • Proceedings of the KIEE Conference
    • /
    • 2005.11b
    • /
    • pp.337-339
    • /
    • 2005
  • The purpose of this paper is to compensate the voltage drop of the power system in the AC High-Speed Railway (HSR). Reactive power compensation is often the most effective way to improve system voltage drop. The suitable modeling of the electric railway system should be applied to the EMTP. the dynamic characteristics of 3-Phase Induction Motor in Electric Railway Systems is considered for precise modeling. it is shown through EMTP simulation that voltage drop can be compensated effectively by STATCOM.

  • PDF

Modeling of a 5-Bar Linkage Robot Manipulator with Joint Flexibility Using Neural Network (신경 회로망을 이용한 유연한 축을 갖는 5절 링크 로봇 메니퓰레이터의 모델링)

  • 이성범;김상우;오세영;이상훈
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.431-431
    • /
    • 2000
  • The modeling of 5-bar linkage robot manipulator dynamics by means of a mathematical and neural architecture is presented. Such a model is applicable to the design of a feedforward controller or adjustment of controller parameters. The inverse model consists of two parts: a mathematical part and a compensation part. In the mathematical part, the subsystems of a 5-bar linkage robot manipulator are constructed by applying Kawato's Feedback-Error-Learning method, and trained by given training data. In the compensation part, MLP backpropagation algorithm is used to compensate the unmodeled dynamics. The forward model is realized from the inverse model using the inverse of inertia matrix and the compensation torque is decoupled in the input torque of the forward model. This scheme can use tile mathematical knowledge of the robot manipulator and analogize the robot characteristics. It is shown that the model is reasonable to be used for design and initial gain tuning of a controller.

  • PDF