• Title/Summary/Keyword: compensation function

Search Result 590, Processing Time 0.03 seconds

A MTF Compensation for Satellite Image Using L-curve-based Modified Wiener Filter (L-곡선 기반의 Modified Wiener Filter(MWF)를 이용한 위성 영상의 MTF 보상)

  • Jeon, Byung-Il;Kim, Hongrae;Chang, Young Keun
    • Korean Journal of Remote Sensing
    • /
    • v.28 no.5
    • /
    • pp.561-571
    • /
    • 2012
  • The MTF(Modulation Transfer Function) is one of quality assesment factors to evaluate the performance of satellite images. Image restoration is needed for MTF compensation, but it is an ill-posed problem and doesn't have a certain solution. Lots of filters were suggested to solve this problem, such as Inverse Filter(IF), Pseudo Inverse Filter(PIF) and Wiener Filter(WF). The most commonly used filter is a WF, but it has a limitation on distinguishing signal and noise. The L-curve-based Modified Wiener Filter(MWF) is a solution technique using a Tikhonov regularization method. The L-curve is used for estimating an optimal regularization parameter. The image restoration was performed with Dubaisat-1 images for PIF, WF, and MWF. It is found that the image restored with MWF results in more improved MTF by 20.93% and 10.85% than PIF and WF, respectively.

Evaluation of Obstructive Pulmonary Function Impairment Risks in Pulmonary Emphysema Detected by Low-Dose CT: Compared with Simple Digital Radiography (단순 디지털 촬영과 저선량 CT의 폐기종 소견으로부터 폐쇄성 폐기능 장애 위험 비교)

  • Lee, Won-Jeong;Lee, Jeong-Oh;Choi, Byung-Soon
    • Tuberculosis and Respiratory Diseases
    • /
    • v.71 no.1
    • /
    • pp.37-45
    • /
    • 2011
  • Background: Pulmonary emphysema (PE) is major cause of obstructive pulmonary function impairment (OPFI), which is diagnosed by spirometry. PE by high resolution CT is known to be correlated with OPFI. Recently, low dose CT (LDCT) has been increasingly used for screening interstitial lung diseases including PE. The aim of this study was to evaluate OPFI risks of subjects with PE detected by LDCT compared with those detected by simple digital radiography (SDR). Methods: LDCT and spirometry were administered to 266 inorganic dust exposed retired workers, from May 30, 2007 to August 31, 2008. This study was approved by our institutional review board and informed consent was obtained. OPFI risk was defined as less than 0.7 of forced expiratory volume in one second (FEV1)/forced vital capacity (FVC), and relative risk (RR) of OPFI of PE was calculated by multiple logistic regression analysis. Results: Of the 266 subjects, PE was found in 28 subjects (10.5%) by LDCT and in 11 subjects (4.1%) by SDR; agreement was relatively low (kappa value=0.32, p<0.001). FEV1 and FEV1/FVC were significantly different between PE and no PE groups determined by either SDR or LDCT. The differences between groups were larger when the groups were divided by the findings of SDR. When PE was present in either LDCT or SDR assays, the RRs of OPFI were 2.34 and 8.65, respectively. Conclusion: LDCT showed significantly higher sensitivity than SDR for detecting PE, especially low grade PE, in which pulmonary function is not affected. As a result, the OPFI risks in the PE group by LDCT was lower than that in the PE group by SDR.

Study of Rotational Motion Compensation Method Based on PPP for ISAR Imaging (ISAR 영상 형성을 위한 PPP 기반 회전운동 보상기법 연구)

  • Kang, Ki-Bong;Park, Sang-Hong;Kang, Byung-Soo;Ryu, Bo-Hyun;Kim, Kyung-Tae
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.29 no.2
    • /
    • pp.109-117
    • /
    • 2018
  • In order to form focused inverse synthetic aperture radar(ISAR) images of a non-uniformly rotating target, rotational motion compensation(RMC) should be performed. Prominent point processing(PPP), one of the most representative RMC methods, is used to compensate nonlinear rotation motion by exploiting the phase signals of scatterers. In this paper, we propose a new RMC method based on the integrated cubic phase function(ICPF). The ICPF requires only one-dimensional(1-D) maximization to estimate the phases of multi-component signals. Simulation results using a point scatterers model in the absence of dominant scatterers validate that PPP based on ICPF can achieve well-focused ISAR images in real time.

Performance Compensation of the Satellite Imager below Normal Altitude Using Line-Of-Sight Tilt over Spherical Earth Surface (구면 지표에서 경사촬영을 이용한 위성 영상기의 고도 저하 성능 보정)

  • 조영민
    • Korean Journal of Remote Sensing
    • /
    • v.20 no.2
    • /
    • pp.117-124
    • /
    • 2004
  • A spherical earth surface is used for realistic analysis of the geometrical performance characteristics generated by 2-dimensional line-of-sight (LOS) tilt of the satellite imager using the Time Delay and Integration(TDI) technique. A 2-dimensional LOS tilt ever the spherical Earth surface is proposed to compensate geometric performance degradation caused by the satellite altitude decrease below the normal operation altitude. The compensation can be achieved by TDI re-match without degradation of modulation transfer function and with ground sample distance slightly increased. Effective methods of LOS tilt for the compensation are investigated. This study can be useful for mission assurance and flexibility in imager operation.

Video Backlight Compensation Algorithm Based on Reliability of Brightness Variation (밝기 변화량의 신뢰도에 기반한 역광 비디오 영상의 보정 알고리듬)

  • Hyun, Dae-Young;Heu, Jun-Hee;Kim, Chang-Su;Lee, Sang-Uk
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.47 no.6
    • /
    • pp.117-126
    • /
    • 2010
  • In the case of failure images with controlling lighting like backlighting and excessive frontlinghting, the compensation scheme for a specific area in an image is required. The interested region is first selected by user in our method to compensate the first frame. Then we define the matching function of brightness and energy function is proposed with weight of matching function and the relationship among the neighbors. Finally, the energy is minimized by the graph-cut algorithm to compensate the brightness of the first frame. Other frames are straightforwardly compensated using the results of the first frame. The brightness variations of the previous frame is transmitted to the next frame via motion vectors. The reliability of the brightness variation is calculated based on the motion vector reliability. Video compensation result is achieved by the process of the image case. Simulation show that the proposed algorithm provides more natural results than the conventional algorithms.

Multiple-Period Repetitive Controller for Selective Harmonic Compensation with Three-Phase Shunt Active Power Filter

  • Zhang, Chao;Gong, Maofa;Zhang, Yijun;Li, Yuxia
    • Journal of Power Electronics
    • /
    • v.15 no.3
    • /
    • pp.819-829
    • /
    • 2015
  • This paper presents a shunt active power filter (SAPF) for compensating inter-harmonics and harmonics when inter-harmonics content is evident in the grid. The principle of inter-harmonics generation in the grid was analyzed, and the inter-harmonics effect on repetitive controllers was discussed in terms of control performance. Traditional repetitive controllers are not applicable in inter-harmonic compensation. Moreover, the effect of an ideal controller on harmonics signals was analyzed on the basis of the internal model principle. The repetitive controller was improved in the form of a basis function according to theoretical analysis. The finite-dimensional repetitive controller, which is also called the multiple-period repetitive controller, was designed for the control of multiple periodic signals. A selective harmonic compensation system was developed with SAPF. This system can be used to compensate harmonics and inter-harmonics in the grid. Finally, system control performance was verified by simulation and experimental results.

Adaptive Compensation Method Using the Prediction Algorithm for the Doppler Frequency Shift in the LEO Mobile Satellite Communication System

  • You, Moon-Hee;Lee, Seong-Pal;Han, Young-Yearl
    • ETRI Journal
    • /
    • v.22 no.4
    • /
    • pp.32-39
    • /
    • 2000
  • In low earth orbit (LEO) satellite communication systems, more severe phase distortion due to Doppler shift is frequently detected in the received signal than in cases of geostationary earth orbit (GEO) satellite systems or terrestrial mobile systems. Therefore, an estimation of Doppler shift would be one of the most important factors to enhance performance of LEO satellite communication system. In this paper, a new adaptive Doppler compensation scheme using location information of a user terminal and satellite, as well as a weighting factor for the reduction of prediction error is proposed. The prediction performance of the proposed scheme is simulated in terms of the prediction accuracy and the cumulative density function of the prediction error, with considering the offset variation range of the initial input parameters in LEO satellite system. The simulation results showed that the proposed adaptive compensation algorithm has the better performance accuracy than Ali's method. From the simulation results, it is concluded the adaptive compensation algorithm is the most applicable method that can be applied to LEO satellite systems of a range of altitude between 1,000 km and 2,000 km for the general error tolerance level, M = 250 Hz.

  • PDF

Ultrasound Image Enhancement Based on Automatic Time Gain Compensation and Dynamic Range Control

  • Lee, Duh-Goon;Kim, Yong-Sun;Ra, Jong-Beom
    • Journal of Biomedical Engineering Research
    • /
    • v.28 no.2
    • /
    • pp.294-299
    • /
    • 2007
  • For efficient and accurate diagnosis of ultrasound images, appropriate time gain compensation(TGC) and dynamic range(DR) control of ultrasound echo signals are important. TGC is used for compensating the attenuation of ultrasound echo signals along the depth, and DR controls the image contrast. In recent ultrasound systems, these two factors are automatically set by a system and/or manually adjusted by an operator to obtain the desired image quality on the screen. In this paper, we propose an algorithm to find the optimized parameter values far TGC and DR automatically. In TGC optimization, we determine the degree of attenuation compensation along the depth by dividing an image into vertical strips and reliably estimating the attenuation characteristic of ultrasound signals. For DR optimization, we define a novel cost function by properly using the characteristics of ultrasound images. We obtain experimental results by applying the proposed algorithm to a real ultrasound(US) imaging system. The results verify that the proposed algorithm automatically sets values of TGC and DR in real-time such that the subjective quality of the enhanced ultrasound images may be sufficiently high for efficient and accurate diagnosis.

Peak-Valley Current Mode Controlled H-Bridge Inverter with Digital Slope Compensation for Cycle-by-Cycle Current Regulation

  • Manoharan, Mohana Sundar;Ahmed, Ashraf;Park, Joung-Hu
    • Journal of Electrical Engineering and Technology
    • /
    • v.10 no.5
    • /
    • pp.1989-2000
    • /
    • 2015
  • In this paper, digital peak current mode control for single phase H-bridge inverters is developed and implemented. The digital peak current mode control is achieved by directly controlling the PWM signals by cycle-by-cycle current limitation. Unlike the DC-DC converter where the output voltage always remains in the positive region, the output of DC-AC inverter flips from positive to negative region continuously. Therefore, when the inverter operates in negative region, the control should be changed to valley current mode control. Thus, a novel control logic circuit is required for the function and need to be analyzed for the hardware to track the sinusoidal reference in both regions. The problem of sub-harmonic instability which is inherent with peak current mode control is also addressed, and then proposes the digital slope compensation in constant-sloped external ramp to suppress the oscillation. For unipolar PWM switching method, an adaptive slope compensation in digital manner is also proposed. In this paper, the operating principles and design guidelines of the proposed scheme are presented, along with the performance analysis and numerical simulation. Also, a 200W inverter hardware prototype has been implemented for experimental verification of the proposed controller scheme.

Tolerance Analysis and Compensation Method Using Zernike Polynomial Coefficients of Omni-directional and Fisheye Varifocal Lens

  • Kim, Jin Woo;Ryu, Jae Myung;Kim, Young-Joo
    • Journal of the Optical Society of Korea
    • /
    • v.18 no.6
    • /
    • pp.720-731
    • /
    • 2014
  • There are many kinds of optical systems to widen a field of view. Fisheye lenses with view angles of 180 degrees and omni-directional systems with the view angles of 360 degrees are recognized as proper systems to widen a field of view. In this study, we proposed a new optical system to overcome drawbacks of conventional omni-directional systems such as a limited field of view in the central area and difficulties in manufacturing. Thus we can eliminate the undesirable reflection components of the omni-directional system and solve the primary drawback of the conventional system. Finally, tolerance analysis using Zernike polynomial coefficients was performed to confirm the productivity of the new optical system. Furthermore, we established a method of optical axis alignment and compensation schemes for the proposed optical system as a result of tolerance analysis. In a sensitivity calculation, we investigated performance degradation due to manufacturing error using Code V(R) macro function. Consequently, we suggested compensation schemes using a lens group decentering. This paper gives a good guidance for the optical design and tolerance analysis including the compensation method in the extremely wide angle system.