• Title/Summary/Keyword: comparative static and dynamic analysis

Search Result 54, Processing Time 0.025 seconds

Comparative Study on the Results of Seismic Design by Dynamic Analysis Method (동적 해석법을 이용한 내진설계 결과의 비교 고찰)

  • 이성우;노홍식;심규점
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1991.10a
    • /
    • pp.81-89
    • /
    • 1991
  • Recently increasing number of highrise buildings are aseismically designed by dynamic analysis method. To perform comparative study on the results of seismic design by dynamic analysis method, five-to thirty-story building models of ductile moment resisting frames and braced frames are considered. Base shears of these models using the spectrum of equivalent static method in the current Korean code and the ones of dynamic analysis method in the UBC-88 code are compared. Based on this study design spectra to be used in the dynamic analysis in Korea are proposed and the results are compared.

  • PDF

Comparative structural analysis of lattice hybrid and tubular wind turbine towers

  • Kumaravel, R.;Krishnamoorthy, A.
    • Wind and Structures
    • /
    • v.30 no.1
    • /
    • pp.29-35
    • /
    • 2020
  • This paper presents a comparative structural analysis of lattice hybrid tower with six legs with conventional tubular steel tower for an onshore wind turbine using finite element method. Usually a lattice hybrid tower will have a conventional industry standard 'L' profile section for the lattice construction with four legs. In this work, the researcher attempted to identify and analyze the strength of six legged lattice hybrid tower designed with a special profile instead of four legged L profile. And to compare the structural benefits of special star profile with the conventional tubular tower. Using Ansys, a commercial FEM software, both static and dynamic structural analyses were performed. A simplified finite element model that represents the wind turbine tower was created using Shell elements. An ultimate load condition was applied to check the stress level of the tower in the static analysis. For the dynamic analysis, the frequency extraction was performed in order to obtain the natural frequencies of the tower.

A Study on Impact of Cost Changes in Fishery Using Comparative Static and Dynamic Approach (비교 정태·동태 분석을 이용한 수산물 비용변화의 영향에 관한 연구)

  • Choi, Jong Du
    • Environmental and Resource Economics Review
    • /
    • v.12 no.2
    • /
    • pp.299-325
    • /
    • 2003
  • This study uses Conrad's model(nominal fishing effort) of a fishery to analyze theoretically the effects of cost changes on fishing effort, harvest level, and stock size. Static and dynamic open access effects are also modeled present value maximizing scenarios through simulations, and compared an extended model, Cunningham's model(diminishing fishing effort). Results show that an increase in the unit cost of effort goes up the fish stock in static open access, but open access dynamics shows the exhaustion of fish stock as the unit cost of effort decreases. In conclusion, we can derive the optimal equilibrium of resource, given conditions and parameters, as well as utilize this comparative statics to efficient fishery management.

  • PDF

A comparative study on the behavior of dynamic analysis and pseudo-static analysis considering SSI of a tall building and an adjacent underground structure (초고층 빌딩과 인접 지하구조물의 SSI를 고려한 동적해석과 유사정적해석의 거동 비교 연구)

  • You, Kwang-Ho;Kim, Seung-Jin
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.20 no.4
    • /
    • pp.671-686
    • /
    • 2018
  • Recently, earthquakes have occurred near Gyeongju and Pohang and the social demands are thus being increased for seismic analysis of tall buildings and their adjacent underground structure in big cities. Since most of the previous seismic analysis studies considered a tall building and an adjacent underground structure separately, however, they lack the analysis on dynamic mutual behavior between two structures. Therefore, in this study, a dynamic analysis with a full soil-structure interaction was performed for a complex underground facility with a tall building and an adjacent underground structure constructed on the bedrock with a surface layer. To improve the reliability, in particular, a pseudo-static analysis was performed and compared with the dynamic analysis results. It is comprehensively concluded that the analysis of adjacent underground structures being considered is more conservative than that of not considered.

A Comparative Study on the Bearing Capacity of Dynamic Load Test and Static Load Test of PHC Bored Pile (PHC 매입말뚝의 동재하시험과 정재하시험의 지지력 비교·분석 연구)

  • Park, Jongbae
    • Journal of the Korean GEO-environmental Society
    • /
    • v.18 no.9
    • /
    • pp.19-31
    • /
    • 2017
  • In case of USA, the drilled shaft and the driven pile in the field showed a good correlation in the analysis of the bearing capacity between the dynamic load test and the static load test. However, in Korea, we mainly install the bored pile, which is not widely used overseas and we tried to confirm the reliability of the dynamic load test on the bored pile, because many people questioned the reliability of it. In this study, load tests were carried out on PHC bored piles in LH field (Cheonan, Incheon, Uijeongbu), and the bearing capacity of the dynamic load test (EOID 7times, Restrike 7times) and the static load test (7times) were compared and analyzed. As a result, the average of the bearing capacity of the static load test was 27% higher than that of the dynamic load test (reliability : 0.73, coefficient of variation : 0.3). And the average of the bearing capacity of the static load test (Davisson) was 27% higher than that of the bearing capacity of the dynamic load test (Davisson) (reliability : 0.73, coefficient of variation : 0.2). To reduce the difference between the bearing capacity of the dynamic load test and the static load test, we proposed modified bearing capacity of dynamic load test (base bearing capacity of EOID + skin frictional force of restrike) and difference between the bearing capacities was reduced to 9% (reliability : 0.91, coefficient of variation : 0.2). And the coefficient of variation was reduced to 0.2 and the consistency of analysis increased.

Comparison of the seismic performance of existing RC buildings designed to different codes

  • Zeris, Christos A.;Repapis, Constantinos C.
    • Earthquakes and Structures
    • /
    • v.14 no.6
    • /
    • pp.505-523
    • /
    • 2018
  • Static pushover analyses of typical existing reinforced concrete frames, designed according to the previous generations of design codes in Greece, have established these structures' inelastic characteristics, namely overstrength, global ductility capacity and available behaviour factor q, under planar response. These were compared with the corresponding demands at the collapse limit state target performance point. The building stock considered accounted for the typical variability, among different generations of constructed buildings in Greece, in the form, the seismic design code in effect and the material characteristics. These static pushover analyses are extended, in the present study, in the time history domain. Consequently, the static analysis predictions are compared with Incremental Dynamic Analysis results herein, using a large number of spectrum compatible recorded base excitations of recent destructive earthquakes in Greece and abroad, following, for comparison, similar conventional limiting failure criteria as before. It is shown that the buildings constructed in the 70s exhibit the least desirable behaviour, followed by the buildings constructed in the 60s. As the seismic codes evolved, there is a notable improvement for buildings of the 80s, when the seismic code introduced end member confinement and the requirement for a joint capacity criterion. Finally, buildings of the 90s, designed to modern codes exhibit an exceptionally good performance, as expected by the compliance of this code to currently enforced seismic provisions worldwide.

An Analysis of the Impact of Climate Change on the Korean Onion Market

  • BAEK, Ho-Seung;KIM, In-Seck
    • The Journal of Industrial Distribution & Business
    • /
    • v.11 no.3
    • /
    • pp.39-50
    • /
    • 2020
  • Purpose: Agriculture, which is heavily influenced by climate conditions, is one of the industries most affected by climate change. In this respect, various studies on the impact of climate change on the agricultural market have been conducted. Since climate change is a long-term phenomenon for more than a decade, long-term projections of agricultural prices as well as climate variables are needed to properly analyze the impact of climate change on the agricultural market. However, these long-term price projections are often major constraints on studies of climate changes. The purpose of this study is to analyze the impacts of climate changes on the Korean onion market using ex-post analysis approach in order to avoid the difficulties of long-term price projections. Research design, data and methodology: This study develops an annual dynamic partial equilibrium model of Korean onion market. The behavioral equations of the model were estimated by OLS based on the annual data from 1988 to 2018. The modelling system is first simulated to have actual onion market conditions from 2014 to 2018 as a baseline and then compared it to the scenario assuming the climatic conditions under RCP8.5 over the same period. Scenario analyses were simulated by both comparative static and dynamic approach to evaluate the differences between the two approaches. Results: According to the empirical results, if the climate conditions under RCP8.5 were applied from 2014 to 2018, the yield of onion would increase by about 4%, and the price of onion would decrease from 3.7% to 17.4%. In addition, the average price fluctuation rate over the five years under RCP8.5 climate conditions is 56%, which is more volatile than 46% under actual climate conditions. Empirical results also show that the price decreases have been alleviated in dynamic model compared with comparative static model. Conclusions: Empirical results show that climate change is expected to increase onion yields and reduce onion prices. Therefore, the appropriate countermeasures against climate change in Korean onion market should be found in the stabilization of supply and demand for price stabilization rather than technical aspects such as the development of new varieties to increase productivity.

Study on the Fatigue Test and the Accelerated Life Test for Dental Implant using Universal-Joint Test Type (유니버설조인트 시험방식을 이용한 치과용 임플란트의 피로시험 및 가속수명시험에 관한 연구)

  • Do, Gyeong Hun;Lee, Seok Jin;Kim, Jong Mi;Kim, Sung Min
    • Journal of Applied Reliability
    • /
    • v.17 no.1
    • /
    • pp.50-57
    • /
    • 2017
  • Purpose : This paper is a comparative analysis results of the fatigue test for dental implants and accelerated life test by using a static type loading device commonly used in Korea and a dynamic type loading device (universal-joint) recommended by FDA. Methods : Fatigue tests of dental implant is based on ISO 14801 and classified into static load test and dynamic load test. The tests were carried out on three test specimens by four load stress steps under each loading device. For analysis on failure mode such as crack, fracture and permanent deformation of test specimens, we used X-ray three-dimensional computed tomography on test specimens before and after the fatigue tests. The design of the accelerated life test was based on the analysis results of the fatigue life data obtained from the dynamic load test and the statistical analysis software (Minitab ver.15) was used to analyze the appropriate life distribution. Results : As a result of the fatigue tests and the accelerated life tests at same acceleration condition under each test method, the fatigue life under the dynamic type loading device (universal-joint) was shorter than when static type loading device was applied. Conclusion : This paper can be used as a reference when the universal-joint type loading device for implants fatigue test is applied as ISO 14801.

Dynamic stiffness based computation of response for framed machine foundations

  • Lakshmanan, N.;Gopalakrishnan, N.;Rama Rao, G.V.;Sathish kumar, K.
    • Geomechanics and Engineering
    • /
    • v.1 no.2
    • /
    • pp.121-142
    • /
    • 2009
  • The paper deals with the applications of spectral finite element method to the dynamic analysis of framed foundations supporting high speed machines. Comparative performance of approximate dynamic stiffness methods formulated using static stiffness and lumped or consistent or average mass matrices with the exact spectral finite element for a three dimensional Euler-Bernoulli beam element is presented. The convergence of response computed using mode superposition method with the appropriate dynamic stiffness method as the number of modes increase is illustrated. Frequency proportional discretisation level required for mode superposition and approximate dynamic stiffness methods is outlined. It is reiterated that the results of exact dynamic stiffness method are invariant with reference to the discretisation level. The Eigen-frequencies of the system are evaluated using William-Wittrick algorithm and Sturm number generation in the $LDL^T$ decomposition of the real part of the dynamic stiffness matrix, as they cannot be explicitly evaluated. Major's method for dynamic analysis of machine supporting structures is modified and the plane frames are replaced with springs of exact dynamic stiffness and dynamically flexible longitudinal frames. Results of the analysis are compared with exact values. The possible simplifications that could be introduced for a typical machine induced excitation on a framed structure are illustrated and the developed program is modified to account for dynamic constraint equations with a master slave degree of freedom (DOF) option.

Comparative Study on Seismic Design of Soil-Reinforced Segmental Retaining Walls (블록식 보강토 옹벽의 내진설계에 관한 비교연구)

  • 유충식
    • Journal of the Korean Geotechnical Society
    • /
    • v.16 no.4
    • /
    • pp.51-61
    • /
    • 2000
  • This paper reviews fundamentals of a pseudo-static seismic design/analysis method for soil-reinforced segmental retaining walls. A comparative study on NCMA and FHWA seismic design guidelines, which are one of the most well known design guidelines for mechanically stabilized earth walls, was also performed. The results demonstrate that there exist significant discrepancies in the results of external stability analysis despite the same calculation model used in the two guidelines, due primarily to different seismic coefficient selection criteria. It is also demonstrated that the internal stability calculation model for NCMA guideline tends to yield larger seismic reinforcement force in the shallower reinforcement layers, resulting in an increased number of reinforcement layers at the top of reinforced wall and increased reinforcement lengths to ensure adequate anchorage capacity. The internal stability calculation model adopted by FHWA guideline, however, leads to redistribution of dynamic force to the lower reinforcement layers and thus results n an opposite trend of NCMA guideline. Findings from this study clearly demonstrate a need for more in-depth studies to develop a generally acceptable design/analysis method.

  • PDF