• Title/Summary/Keyword: compaction time

검색결과 232건 처리시간 0.027초

페이스트플로우, 진동다짐시간 및 다짐두께에 따른 포러스콘크리트의 기초물성에 관한 실험적 연구 (An Experimental Study on the Fundamental Properties of Porous Concrete by Paste Flow, Compaction Time and Compaction Thickness)

  • 이성일;이종호;김재환;최세진;백용관;김무한
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2002년도 가을 학술발표회 논문집
    • /
    • pp.91-96
    • /
    • 2002
  • This study is to analyze the influence of paste flow, compaction time and compaction thickness on the fundamental properties of porous concrete. Results of this study were shown as follows; 1) As paste flow increase, compaction time according to paste flow and compaction thickness decrease. Also, though paste flow is same, as compaction thickness increase, compaction time Increase. So It must be considered that the influence of compaction time according to paste flow and compaction thickness. 2) In the range of this study, compressive strength is the highest value at paste flow 190mm. 3) Occasion of manufactured compactor in this study compaction thickness 10, 15cm is influenced heavily but compaction thickness 20cm is influenced slightly.

  • PDF

반복압축하의 응집된 알루미나 분말의 치밀화 (Densification of Aggregated Alumina Powder under Cyclin Compaction)

  • 김기태;손건석;서정
    • 한국세라믹학회지
    • /
    • 제29권2호
    • /
    • pp.136-142
    • /
    • 1992
  • The effects of cyclic stress, frequency and bias-pressure on densification of Al2O3 powder cyclic compaction are investigated. The effect of frequency was not significant on densification of Al2O3 powder under cyclic compaction. The higher the cyclic stress and the lower the bias pressure, the higher densification was achieved. To obtain a higher densification, cyclic compaction was more efficient than 1 stroke compaction. A densification equation was proposed to describe an cyclic time dependent pressure-volume relation for Al2O3 powder under cyclic compaction. This equation was obtained empirically, based on the pressure-volume equation proposed by Cooper and Eaton, the time dependent densification equation by Kim and Suh and experimental data for Al2O3 powder under cyclic compaction. The agreement between the proposed equation and experimental data for Al2O3 powder under cyclic compaction was very good.

  • PDF

문양 콘크리트의 프리캐스트화를 위한 실험적 연구 (An Experimental Study on the Design-Concrete for Precast Concrete)

  • 김재은;공민호;김광기;조상영;정재영;정상진
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2004년도 학술대회지
    • /
    • pp.11-14
    • /
    • 2004
  • The object of this study is vibrating compaction and curing method in the production process of Design concrete for precast concrete(Design-PC) product. From change of vibrating compaction time and pre-curing time. curing temperature which would be factors of product quality in Design-PC concrete production. and research of optimized steam curing condition from relations between curing condition and strength development. basic data of vibrating compaction time and concrete steam curing method for Design-PC will be presented.

  • PDF

Compressive strength characteristics of cement treated sand prepared by static compaction method

  • Yilmaz, Yuksel;Cetin, Bora;Kahnemouei, Vahid Barzegari
    • Geomechanics and Engineering
    • /
    • 제12권6호
    • /
    • pp.935-948
    • /
    • 2017
  • An experimental program was conducted to investigate the effects of the static compaction pressure, cement content, water/cement ratio, and curing time on unconfined compressive strength (UCS) of the cement treated sand. UCS were conducted on samples prepared with 4 different cement/sand ratios and were compacted under the lowest and highest static pressures (8 MPa and 40 MPa). Each sample was cured for 7 and 28 days to observe the impact of curing time on UCS of cement treated samples. Results of the study showed the unconfined compressive strength of sand increased as the cement content (5% to 10%) of the cement-sand mixture and compaction pressure (8 MPa to 40 MPa) increased. UCS of sand soil increased 30% to 800% when cement content was increased from 2.5% to 10%. Impact of compaction pressure on UCS decreased with a reduction in cement contents. On the other hand, it was observed that as the water content the cement-sand mixture increased, the unconfined compressive strength showed tendency to decrease regardless of compaction pressure and cement content. When the curing time was extended from 7 days to 28 days, the unconfined compressive strengths of almost all the samples increased approximately by 2 or 3 times.

보정계수 및 시험체두께가 포러스콘크리트의 기초물성에 미치는 영향에 관한 실험적 연구 (An Experimental Study on the Properties of Porous Concrete according to Correction Factor and Specimen Thickness)

  • 김재환;이성일;장종호;오시덕;박정호;김무한
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2002년도 학술.기술논문발표회
    • /
    • pp.55-58
    • /
    • 2002
  • This study is to analyze the influence of correction factor and specimen thickness on the fundamental properties of porous concrete. Results of this study were shown as follows; 1) As correction factor decrease, compaction time according to correction factor and specimen thickness decrease. Also, though correction factor is same, as specimen thickness increase, compaction time increase. So It mutt be considered that the influence of compaction time according to correction factor and specimen thickness. 2) As correction factor decrease, difference of measured thickness and designed thickness according to correction factor and specimen thickness decrease. Also, correction factor of aggregate of 10~l5mm is smaller than that of 5~l0mm. So It must be considered that the influence of correction factor according to size of aggregate.

  • PDF

다짐공사에 대한 롤러의 효율적 품질관리 방안 연구 (A Study on Analysis Method for Roller Compaction Work)

  • 이수민;이승수;유상훈;서종원
    • 대한토목학회논문집
    • /
    • 제37권3호
    • /
    • pp.621-627
    • /
    • 2017
  • 본 연구는 다짐공사의 경험적 판단에 의한 품질관리 문제점에 대하여 GPS (Global Positioning System)를 롤러에 적용하여 위치정보의 DB화 및 3D 모델링을 통해 불필요한 다짐작업 또는 과도한 다짐작업을 제거함으로써 품질향상과 공기단축을 할 수 있다. 또한, 가속도계를 이용한 연속다짐 방법을 설계하여 다짐작업 후 평판재하시험을 통한 품질측정이 아닌 ICMV (Intelligent Compaction Measurement Values)분석을 이용하여 실시간 품질측정을 수행할 수 있는 연속다짐 방법론을 제시 한다. ICMV분석의 세부 방법에는 CMV (Compaction Meter Value)분석이 있으며 CMV는 다져진 지반의 다짐도를 빠르고 편리하게 평가할 수 있다.

준고온 첨가제를 사용한 각종 아스팔트 혼합물의 다짐도 변화 연구 (Compactability of various asphalt mixtures using warm mix additive)

  • 박태순
    • 한국도로학회논문집
    • /
    • 제11권4호
    • /
    • pp.127-132
    • /
    • 2009
  • 본 논문은 준고온 첨가제가 혼입된 3 종류(일반아스팔트, SBS 및 SMA)의 아스팔트 혼합물 다짐도 변화에 대한 시험 결과이다. 다짐 특성을 조사 분석하기 위하여 다짐 시간 변화와 준고온 첨가제 함량 변화에 의한 다짐도 측정을 실시하였으며, 다짐 온도를 일반시료에 비하여 $30^{\circ}C$$50^{\circ}C$를 낮추어 밀도를 비교하였다. 선회 다짐 장비를 사용하여 다짐 횟수 변화에 따른 다짐밀도의 변화를 측정하였다. 다짐시간 경과와 다짐도의 관계는 3 종류의 준고온 첨가제를 일반 아스팔트에 첨가하여 다짐시간 변화와 첨가제 함량 변화에 따른 다짐도를 측정하였다. 온도 저감에 따른 다짐도 비교는 일반 아스팔트 혼합물, 고분자 개질 아스팔트 및 SMA 혼합물 3 종류의 혼합물을 사용하여 시험을 실시하였다. 준고온 아스팔트 혼합물은 다짐온도 저감으로 인하여 일반시료 아스팔트 혼합물과 밀도의 차이가 발생하지 않아서 다짐도가 안정된 상태를 나타냈다. 한편, 혼합물의 종류 및 준고온 첨가제의 종류에 따라 밀도의 차이, 다짐도 변화의 추이 변화가 발견되어 이들 두 인자 사이에 상관관계가 있는 것으로 나타났다.

  • PDF

지연다짐이 Soil-Cement의 압축강도에 미치는 영향 (The Effect of Delayed Compaction on Unconfined Compressive Strength of Soil-Cement Mixtures)

  • 정일웅;김문기;도덕현
    • 한국농공학회지
    • /
    • 제28권4호
    • /
    • pp.66-76
    • /
    • 1986
  • This study was attempted to investigate the effects of delayed compaction on the unconfined compressive strengh and dry density of Soil-cement mixtures. Soil-cement construction is a time-consuming procedure. Time-delay is known as a detrimental factor to lower the quality of soil-cement layer. A laboratory test was performed using coarse and fine weathered granite soils. The soils were mixed with 7% cement at optimum moisture content and excess moisture content in part. Socondary additives such as lime, gypsum-plaster, flyash and sugar were tried to counteract the detri-mental effect of delayed compaction. The specimens were compacted by Harvard Miniature Compaction Apparatus at 0,1,2,4,6 hors after mixing. Two kinds of compactive efforts(9 kgf and 18 kgf tamper) were applied. The results were summarized as follows: 1.With the increase of time delay, the decrease rate of dry density of the specimen compacted by 9 kgf tamper was steeper than that of the specimen compacted by 18kgf tamper. In the same manner, soil-B had steeper decreasing rate of dry density than soil-A. 2.Based on the results of delayed compaction tests, the dry density and unconfined compressive sterngth were rapidly decreased in the early 2 hours delay, while those were slowly decreased during the time delay of 2 to 6 hours. 3.The dry density and unconfined compressive strength were increased by addition of 3% excess water to the optimum moisture content during the time delay of 2 to 6 hours. 4.Without time delay in compaction, the dry densities of soil-A were increased by adding secondary additives such as lime, gypsum-plaster, flyash and sugar, on the other hand, those of soil-B were decreased except for the case of sugar. 5.The use of secondary additives like lime, gypsum-plaster, flyash and sugar could reduce the decrease of unconfined compressive strength due to delayed compaction. Among them, lime was the most effective. 6.From the above mentioned results, several recommendations could be suggested in order to compensate for losses of unconfined compressive strenght and densit v due to delayed compaction. They are a) to use coarse-grained granite soil rather than fined-grained one, b) to add about 3% excess compaction moisture content, c) to increase compactive effort to a certain degree, and d) to use secondary additives like line gypsum-plaster, flyash, and sugar in proper quantity depending on the soil types.

  • PDF

Parameter Investigation for Powder Compaction using Discrete-Finite Element Analysis

  • Choi, Jinnil
    • 한국분말재료학회지
    • /
    • 제22권5호
    • /
    • pp.337-343
    • /
    • 2015
  • Powder compaction is a continually and rapidly evolving technology where it is a highly developed method of manufacturing reliable components. To understand existing mechanisms for compaction, parameter investigation is required. Experimental investigations on powder compaction process, followed by numerical modeling of compaction are presented in this paper. The experimental work explores compression characteristics of soft and hard ductile powder materials. In order to account for deformation, fracture and movement of the particles, a discrete-finite element analysis model is defined to reflect the experimental data and to enable investigations on mechanisms present at the particle level. Effects of important simulation factors and process parameters, such as particle count, time step, particle discretization, and particle size on the powder compaction procedure have been explored.

Influence of Mold Temperature, Lubricant and its Additional Quantity on Compressibility in Warm Compaction

  • Ushirozako, Tsutomu;Yamamoto, Masayuki
    • 한국분말야금학회:학술대회논문집
    • /
    • 한국분말야금학회 2006년도 Extended Abstracts of 2006 POWDER METALLURGY World Congress Part 1
    • /
    • pp.195-196
    • /
    • 2006
  • In recent years, demands for sintered ferrous material with higher strength are increasing. To satisfy these demands, studies and commercial use of the die wall lubrication method, the warm compaction method and the combination of both methods are widely carried out to achieve high density. The die wall lubrication warm compaction method makes it possible to achieve high density by reducing internal lubricant through die wall lubrication, although the method involves several issues such as prolonged cycle time due to lubricant spraying and difficulty in spraying lubricant in the case of compacting with complicated geometry. Meanwhile, the conventional warm compaction method requiring no die wall lubricant application cannot achieve such a high density as in the case of die wall lubrication warm compaction due to higher volume of internal lubricant. However, this report discloses our study result in which the possibility of improving density is exhibited by using a lubricant type with superior dynamic ejection property that can reduce volume of lubricant additive.

  • PDF