• 제목/요약/키워드: compaction temperature

검색결과 161건 처리시간 0.021초

목질바이오매스를 이용한 펠릿연료의 제조 (Pellet Fuel from Wood Biomass)

  • 한규성
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2006년도 추계학술대회
    • /
    • pp.521-524
    • /
    • 2006
  • Recently, densified pollet fuel from wood biomass is widely used at North America and Europe as a regenerable and clean carbon neutral bioenergy. High-pressure compaction of sawdust of several species of wood to form a densified fuel was studied. Calorific and elemental analysis were carried out to assess pellet fuels Hot-press process was adopted for compact ion of sawdust and compaction was performed under prescribed condition. Densified fuels were evaluated by its oven-dry density and fines after 5-minute shaking test. The target density and fines of densified fuels were over $1.2g/cm^3$ and below 0.5%, respectively. When the press-temperature is over $60^{\circ}C$ densified fuels with density over $1.2g/cm^3$ and with fines below 0.5% can be produced. And the pressure over $1000kgf/cm^2$ was effect ive for this production.

  • PDF

몰리브데늄 분말의 치밀화 거동 및 기계적 물성의 이론적 연구 (Theoretical Study on the Consolidation Behavior and Mechanical Property for Molybdenum Powders)

  • 김영무
    • 한국분말재료학회지
    • /
    • 제15권3호
    • /
    • pp.214-220
    • /
    • 2008
  • In this study, consolidation behavior and hardness of commercially available molybdenum powder were investigated. In order to analyze compaction response of the powders, the elastoplastic constitutive equation based on the yield function by Shima and Oyane was applied to predict the compact density under uniaxial pressure from 100MPa to 700MPa. The compacts were sintered at $1400-1600^{\circ}C$ for 20-60 min. The sintered density and grain size of molybdenum were increased with increasing the compacting pressure and processing temperature and time. The constitutive equation, proposed by Kwon and Kim, was applied to simulate the creep densification rate and grain growth of molybdenum powder compacts. The calculated results were compared with experimental data for the powders. The effects of the porosity and grain size on the hardness of the specimens were explained based on the modified plasticity theory of porous material and Hall-Petch type equation.

P/M법과 유도가열 공정을 이용한 발포용 6061 Al 합금 프리커서 제조 (Fabrication of Al 6061 Foamable Precursor by Powder Metallurgical and Induction Heating Method)

  • 윤성원;강충길
    • 소성∙가공
    • /
    • 제12권5호
    • /
    • pp.457-464
    • /
    • 2003
  • In the powder compact melting technique, proper precursor fabrication is very important because density distribution after foaming and foamability are determined during precursor fabrication process. The fabrication of the precursor has to be performed very carefully because any residual porosity or other defects will lead to poor results in further processing. In order to evaluate the effect of the compaction parameters on the kinetics of the foaming process, a series of experiments were performed. In this study, aluminium foams with a closed cell structure were fabricated by using both the powder compact method and the induction heating process. A proper induction coil was designed to obtain a uniform temperature distribution over the entire cross sectional area of precursor. To establish the foamable precursor fabrication conditions, effects of process parameters such as the titanium hydride content (0.3∼1.5 wt.%), pressing pressure of the foamable precursor (50∼150kN) on the pore morphology were investigated.

Numerical simulation of dimensional changes during sintering of tungsten carbides compacts

  • Bouvard, D.;Gillia, O.
    • 한국분말야금학회:학술대회논문집
    • /
    • 한국분말야금학회 1997년도 추계학술강연 및 발표대회 강연 및 발표논문 초록집
    • /
    • pp.7-7
    • /
    • 1997
  • During sintering of very porous green bodies, as obtained by compaction of hard powders - such as tungsten carbide or ceramics - or by injection moulding, important shrinkage occurs. Due to heterogeneous green density field, gravity effects, friction on the support, thermal gradients, etc., this shrinkage is often non-uniform, which' may induce significant shape changes. As the ratio of compact dimension to powder size is very high, the mechanics of continuum is relevant to model such phenomena. Thus numerical techniques, such as the finite element method can be used to simulate the sintering process and predict the final shape of the sintered part. Such type of simulation has much been developed in the last decade firstly for hot isostatic pressing and next for die compaction. Finite element modelling has been recently applied to free sintering. The simulation of sintering should be based on constitutive equations describing the thermo-mechanical behaviour of the material under any state of stress and any temperature which may arise within the sintering body. These equations can be drawn either from experimental data or from micromechanical models. The experiments usually consist in free sintering and sinter-forging tests. Indeed applying more complex loading conditions at high temperature under controlled atmosphere is delicate. Micromechanical models describe the constitutive behaviour of aggregates of spheres from the deformation of two-sphere contact either by viscous flow or grain boundary diffusion. Such models are not able to describe complex microstructure and mechanisms as observed in real materials but they can give some basic information on the formulation of constitutive equations. Practically both experimental and theoretical approaches can be coupled to identify the constitutive equations. Such procedure has been performed for modelling the sintering of compacts obtained by die pressing of a mixture of tungsten carbide and cobalt powders. The constitutive behaviour of this material during sintering has been described by a linear viscous constitutive model, whose functions have been fitted from results of free sintering and sinter-forging experiments. This model has next been introduced in ABAQUS finite element code to simulate the sintering of heterogeneous green compacts of various geometries at constant temperature. Examples of simulations are shown and compared with experiments.

  • PDF

Effects of a compaction method for powder compacts on the critical current density of MgB2 bulk superconductors

  • Kang, M.O.;Joo, J.;Jun, B.H.;Choo, K.N.;Kim, C.J.
    • 한국초전도ㆍ저온공학회논문지
    • /
    • 제21권2호
    • /
    • pp.40-44
    • /
    • 2019
  • In this study, the effects of the compaction method for (Mg+2B) powders on the apparent density and superconducting properties of $MgB_2$ bulk superconductor were investigated. The raw powders used in this study were nano-sized boron (B) and spherical magnesium (Mg). A batch of a powder mixture of (Mg+2B) was put in a steel mold and uniaxially pressed at 1 ton or 3 tons into pellets. Another batch of the powder mixture was uniaxially pressed at 1 ton and then pressed isostatically at $1800kg/cm^2$ in the water chamber. All pellets were heat-treated at $650^{\circ}C$ for 1 h in flowing argon gas for the formation of $MgB_2$. The apparent density of powder compacts pressed at 3 ton was higher than that at 1 ton. The cold isostatic pressing (CIP) in a water chamber allowed further increase of the apparent density of powder compacts, which influenced the pellet density of the final products ($MgB_2$). The compaction methods (uniaxial pressing and CIP) did not affect the formation of $MgB_2$ and superconducting critical temperature ($T_c$) of $MgB_2$, but affected the critical current density ($J_c$) of $MgB_2$ significantly. The sample with the high apparent density showed high $J_c$ at 5 K and 20 K at applied magnetic fields (0-5 T).

Field Enhanced Rapid Thermal Process for Low Temperature Poly-Si TFTs Fabrications

  • Kim, Hyoung-June;Shin, Dong-Hoon
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 한국정보디스플레이학회 2005년도 International Meeting on Information Displayvol.I
    • /
    • pp.665-667
    • /
    • 2005
  • VIATRON TECHNOLOGIES has developed FE-RTP system that enables LTPS LCD and AMOLED manufacturers to produce poly-Si films at low cost, high throughput, and high yield. The system employs sequential heat treatment methods using temperature control and rapid thermal processor modules. The temperature control modules provide exceptionally uniform heating and cooling of the glass substrates to within ${\pm}2^a\;C$. The rapid thermal process that combines heating with field induction accelerates the treatment rates. The new FE-RTP system can process $730{\times}920mm$ glass substrates as thin as 0.4 mm. The uniform nature of poly-Si films produced by FE-RTP resulted in AMOLED panels with no laser-Muras. Furthermore, FE-RTP system also showed superior performances in other heat treatment processes involved in poly-Si TFT fabrications, such as dopant activation, gate oxide densification, hydrogenation, and pre-compaction.

  • PDF

Development of P/M Aluminum Alloy with Fine Microstructure

  • Tokuoka, Terukazu;Kaji, Toshihiko;Nishioka, Takao
    • 한국분말야금학회:학술대회논문집
    • /
    • 한국분말야금학회 2006년도 Extended Abstracts of 2006 POWDER METALLURGY World Congress Part2
    • /
    • pp.712-713
    • /
    • 2006
  • We successfully developed Al-Si-Transition Metal (TM) -Rare Earth (RE) Powder Metallurgy (P/M) alloy with fine microstructure, which has high strength at high temperature. This material was compacted rapidly solidified powder and directly consolidated by hot extruding or forging. Before consolidating, rapid heating was performed on powder compaction in order to keep the fine microstructure in powder state. We have also investigated the processing conditions of this new alloy by computing simulations and experiments.

  • PDF

열ㆍ온간 단조에서 그라파이트 윤활제의 마찰 특성에 대한 연구 (Study for Frictional Characteristics of graphite lubricants in hot. warm forging)

  • 김동진;김병민
    • 한국정밀공학회지
    • /
    • 제17권4호
    • /
    • pp.29-37
    • /
    • 2000
  • At present there are many theories as to how various lubricants used in forging perform the role of reducing friction. Little work has been carried out to determine the validity of these theories for solid lubricants. This paper covers the development and preliminary results of the experiments devised to illustrate the movement of graphite at the workpiece/tool interface in the work forging temperature range. The paper describes the results obtained from upsetting of rings between two flat dies for measurement of lubricant thickness and compaction of graphite for density-pressure relationship. These allowed the lubricant to be exposed to forging conditions and by applying the principles of Male's ring test the simple generation of a value fur friction factor could also be determined. The experiments have been undertaken to examine the behavior of lubricant for shot blasted surface and change of surface roughness. A simple computer model of the interface has been constructed characterizing the graphite layer in an attempt to simulate the boundary mechanics.

  • PDF

W-M(M=Cu, Sn, Ni)계 고밀도 복합재료 제조에 관한 기초연구(I) (A Basic Study on the Fabrication of W-M(M=Cu, Sn, Ni) System High Density Composite (I))

  • 장탁순;홍준희;이태행;구자명;송창빈
    • 한국분말재료학회지
    • /
    • 제16권4호
    • /
    • pp.268-274
    • /
    • 2009
  • For the purpose of obtaining basic information on the development of lead-free materials, a high density composites (a) W-Cu, (b) W-Sn (c)W-Cu-Sn and (d) W-Cu-Ni were fabricated by the P/M method. The particle size of used metal powders were under 325 mesh, inner size of compaction mould was $\phi8$ mm, and compaction pressure was 400 MPa. A High density composite samples were sintered at a temperature between $140^{\circ}C$ and $1050^{\circ}C$ for 1 hour under Ar atmosphere. The microstructure, phase transformation and physical properties of the sintered samples were investigated. As the results, the highest relative density of 95.86% (10.87 g/$cm^3$) was obtained particularly in the sintered W-Cu-Sn ternary system sample sintered at 450 for 1hr. And, Rockwell hardness (HRB) of 70.0 was obtained in this system.

A Study on the Recovery of Zn from Electric Arc Furnace Dust by Carbon Reduction

  • Joo, Sung-Min;Kim, Hyung-Seok;Ahn, Ji-Whan;Kim, Hwan;Lee, Kyung-Hoon;Sung, Ghee-Woong;Kim, Jang-Su;Lee, Park-Seok
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 2001년도 The 6th International Symposium of East Asian Resources Recycling Technology
    • /
    • pp.398-403
    • /
    • 2001
  • There is a potential usability of electric arc furnace(EAF) dust produced during the iron manufacturing process as a recycled resource, because valuable materials such as Zn, Pb and Fe are contained in it. In this study, metallic Zn was recycled from the fine electric arc furnace dust by a solid state reduction method using carbon at relatively low temperature. It was possible to recover metallic zinc by using of high vapour pressure of zinc with this reduction method. The feasibility of recycled zinc for cold bonded pellet(CBP) was investigated. The main composition of EAF dust were franklinite(ZnFe$_2$O$_4$), magnetite(Fe$_3$O$_4$) and zincite(ZnO), and Pb and Cl were completely removed by a heat treatment in oxidation environment. The reduction ratio increased as the solid carbon content increased, and it increased with decreasing of dust particle size and increasing of compaction pressure due to a increase of contact area.

  • PDF