• Title/Summary/Keyword: compaction techniques

Search Result 61, Processing Time 0.018 seconds

Automatic Dynamic Memory Management Techniques for Memory Scarce Java system (메모리가 적은 자바 시스템을 위한 자동 동적 메모리 관리 기법)

  • Choi, Hyung-Kyu;Moon, Soo-Mook
    • Journal of KIISE:Computer Systems and Theory
    • /
    • v.35 no.8
    • /
    • pp.378-384
    • /
    • 2008
  • Many embedded systems are supporting Java as their software platform via Java virtual machine. Java virtual machine manages memory automatically by providing automatic memory management, i.e. garbage collector. Because only scarce memory is available to embedded system, Java virtual machine should use small memory and manage it efficiently. This paper introduces two memory management techniques to exploit small memory in Java virtual machine which can execute multiple Java applications concurrently. First, compaction based garbage collection is introduced to overcome external fragmentation problem in presence of immovable memory area. Then garbage collector driven class unloading is introduced to reduce memory use of unnecessary loaded classes. We implemented these techniques in working embedded system and observed that they are very efficient, since more Java applications are able to be executed concurrently and memory use is also reduced with these techniques.

Influence of binder, aggregate and compaction techniques on the properties of single-sized pervious concrete

  • Juradin, Sandra;Ostojic-Skomrlj, Nives;Brnas, Ivan;Prolic, Marina
    • Advances in concrete construction
    • /
    • v.10 no.3
    • /
    • pp.211-220
    • /
    • 2020
  • In this paper, 18 single-sized pervious concrete mixtures were tested. The mixtures were prepared by altering: the amount and type of binder, type of aggregate, and the method of compaction. Concrete was compacted in layers in one of five different consolidation techniques: with standard tamping rod, wooden lath, concrete cylinder, or vibration of 12 and 40 s. Tests carried out on the specimens were: slump, density, porosity, coefficients of permeability, compressive strength and splitting strength. The relationships between porosity-density and porosity-strength were established. Two mixtures were selected for the preparation of test slabs on different subgrades and their permeability was tested according to ASTM C 1701-09 Standard. By comparing laboratory and field tests of permeability, it was concluded that the subgrade affects the test results. Measurements on the test slabs were repeated after 1 and 2 years of installation.

Evaluation of Compaction Impact According to Compaction Roller Operating Conditions through CMV Analysis (CMV 분석을 통한 다짐롤러 운용 조건에 따른 다짐 영향 평가)

  • Kim, Jinyoung;Baek, Sungha;Kim, Namgyu;Choi, Changho;Kim, Jisun;Cho, Jinwoo
    • Journal of the Korean GEO-environmental Society
    • /
    • v.23 no.8
    • /
    • pp.11-16
    • /
    • 2022
  • The compaction process using vibrating rollers in road construction is essential to increase soil stiffness in earthworks. Currently, there is no clear standard for the operation method of the compaction roller during compaction. Although simple quality inspection techniques have been developed, plate load test (PLT) and field density test (FDT) are the most frequently used test methods to evaluate the degree of compaction during road construction as the most frequently used quality inspection methods. However, both inspection methods are inefficient because they cannot perform quality inspection in all sections due to time and cost reasons. In this study, we analyzed how the operating conditions of vibrating rollers affect the compaction quality. An intelligent quality management system, which is a currently developed and commercialized technology, was used to obtain quality inspection results in all sections. As a result of the test, it was analyzed that the speed and vibration direction of the compaction roller had an effect on the compaction degree, and it was found that the compaction direction had no effect on the compaction degree.

A Study on the Applicability of Slag as Compaction Pile Material (다짐말뚝 채움재로서 슬래그의 적용성 연구)

  • 이미혜;이상익;박용원
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2000.03b
    • /
    • pp.207-214
    • /
    • 2000
  • Sand Compaction Pile method is one of the widely used ground improvement techniques at loose sand or soft clay ground in Asian countries. However, due to environmental and economical problems concerning shortage of sand resources alternative materials are needed to substitute sand for SCP. This study is on the applicability of slag as an alternative material SCP. Consolidation and direct shear test are performed for the slag-clay composite specimens to find out the positive effects of consolidation rate and shear resistance of slag reinforced ground. The result shows that slag has similar effects with sand in consolidation and shear resistance behavior in composite ground, which says slag can be used as alternative material of sand for SCP.

  • PDF

Compaction of Hydrogen Storage Alloy Powders Using Polymer Binders (고분자 결합제를 이용한 수소저장합금 분말의 성형)

  • Song, Kyu-Tae;Kim, Chan-Jung;Choi, Byung-Jin;Kim, Dai-Ryong
    • Journal of Hydrogen and New Energy
    • /
    • v.5 no.1
    • /
    • pp.51-57
    • /
    • 1994
  • Compaction techniques of hydrogen storage alloy 'powders, to solve the problems due to disintegration during the cyclic hydriding and dehydriding, by using polytetrafluoroethylene (PTFE) and silicon sealant as a polymer binder were studied. Optimum conditions of compaction were as follows. Binder content, 10 % for PTFE and 5 % for silicon sealant ; particle size of alloy powders, $-25{\mu}m$ ; compacting pressure, $4ton/cm^2$. Compacts obtained were easily activated and had a good strength even after 30 cycles of hydriding and dehydriding. PTFE added compacts showed very good rate capability, however, in the silicon added compacts hydrogen absorption rate was somewhat slow because of higher elasticity and adhesiveness of the binder.

  • PDF

Consolidation Behavior of SCP Improved Ground at Pusan New Port Part 1-1 (부산신항 1-1단계 SCP 개량지반 압밀 특성)

  • JUNG JONG-BUM;YANG SANG-YONG;BYUN JUN-GI
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2004.11a
    • /
    • pp.51-56
    • /
    • 2004
  • The sand compaction pile (SCP) method, which forms a composite ground by driving sand piles into clay deposit, is the most commonly used soil improvement techniques in many countries for more than 30 years. Installation of sand compaction piles reduces the amount of consolidation settlement and increases the bearing capacity of soft clay deposit. In this paper, field survey conducted to investigated the consolidation behavior of the composite ground improved by SCPs. It is suggested that the measured consolidation velocity is later than design theory, however measured consolidation settlement is higher than design theory.

  • PDF

R&D Review on the Gap Fill of an Engineered Barrier for an HLW Repository (고준위폐기물처분장 공학적방벽의 갭채움재 기술현황)

  • Lee, Jae Owan;Choi, Young-Chul;Kim, Jin-Seop;Choi, Heui-Joo
    • Tunnel and Underground Space
    • /
    • v.24 no.6
    • /
    • pp.405-417
    • /
    • 2014
  • In a high-level waste repository, the gap fill of the engineered barrier is an important component that influences the performance of the buffer and backfill. This paper reviewed the overseas status of R&D on the gap fill used engineered barriers, through which the concept of the gap fill, manufacturing techniques, pellet-molding characteristics, and emplacement techniques were summarized. The concept of a gap fill differs for each country depending on its disposal type and concept. Bentonite has been considered a major material of a gap fill, and clay as an inert filler. Gap fill was used in the form of pellets, granules, or a pellet-granule blend. Pellets are manufactured through one of the following techniques: static compaction, roller compression, or extrusion-cutting. Among these techniques, countries have focused on developing advanced technologies of roller compression and extrusion-cutting techniques for industrial pellet production. The dry density and integrity of the pellet are sensitive to water content, constituent material, manufacturing technique, and pellet size, and are less sensitive to the pressure applied during the manufacturing. For the emplacement of the gap fill, pouring, pouring and tamping, and pouring with vibration techniques were used in the buffer gap of the vertical deposition hole; blowing through the use of shotcrete technology and auger placement and compaction techniques have been used in the gap of horizontal deposition hole and tunnel. However, these emplacement techniques are still technically at the beginning stage, and thus additional research and development are expected to be needed.

Influence of the root canal filling technique on the success rate of primary endodontic treatments: a systematic review

  • Daniel Feijolo Marconi ;Giovana Siocheta da Silva ;Theodoro Weissheimer;Isadora Ames Silva ;Gabriel Barcelos So;Leonardo Thomasi Jahnke ;Jovito Adiel Skupien ; Marcus Vinicius Reis So ; Ricardo Abreu da Rosa
    • Restorative Dentistry and Endodontics
    • /
    • v.47 no.4
    • /
    • pp.40.1-40.18
    • /
    • 2022
  • Objectives: This study aimed to investigate the influence of different obturation techniques compared to cold lateral compaction on the success rate of primary non-surgical endodontic treatments. Materials and Methods: Systematic searches were performed for studies published up to May 17th, 2022 in MEDLINE/PubMed, Cochrane Library, Web of Science, Scopus, EMBASE, and Grey Literature Reports. Randomized clinical trials and nonrandomized (nonrandomized clinical trials, prospective or retrospective) studies that evaluated the success rate of primary non-surgical endodontic treatments obturated with the cold lateral compaction (control) and other obturation techniques were included. The revised Cochrane risk of bias tools for randomized trials (RoB 2) and nonrandomized studies of interventions (ROBINS-I) were used to evaluate the risk of bias. The Grading of Recommendations Assessment, Development, and Evaluation (GRADE) tool was used to evaluate the certainty of evidence. Results: Eleven studies (4 randomized clinical trials (RCTs), 4 prospective, and 3 retrospectives) were included. Two RCTs were classified as having some concerns risk of bias and 2 as a low risk of bias. Two nonrandomized studies were classified as having a critical risk of bias and 5 as having a moderate risk of bias. The GRADE analysis demonstrated a very low to moderate certainty of evidence. Conclusions: This systematic review generally evidenced no differences in the success rate of primary non-surgical endodontic treatments when the cold lateral compaction technique and other obturation techniques are performed. Further well-designed studies are still necessary.

Optimal Use of Stress Waves in Non-Intrusive Seismic Techniques for Geotechnical Applications

  • Joh, Sung-Ho
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2006.10a
    • /
    • pp.434-478
    • /
    • 2006
  • Stress waves have been used for geophysical and geotechnical applications for more than 50 years. The early-stage applications were simply based on travel-time measurements of stress waves and limited to site characterization. Currently stress-wave techniques are expanded to monitoring processes for grouting of damaged geotechnical structures, compaction of embankment, and deformational analyses for static geotechnical problems. Seismic techniques used to be good enough for rough estimators of engineering properties. Nowadays, the sophisticated modeling theory of stress-wave propagation substantially improved reliability and accuracy of the seismic techniques. In this paper, difficulties involved in currently available seismic techniques are discussed and analyzed. Herein some recently-developed non-intrusive seismic techniques, which make optimal use of stress waves for further improvement of reliability and accuracy, are also presented.

  • PDF

A Study on Embankment Compaction Control System using RI Gauge (I) -Focuses on the Inspection and Calibration of Radio-Isotope Density/Moisture Gauges- (RI계기를 이용한 성토시공 관리기법 연구 (I) -RI계기의 검증실험 및 교정식 작성-)

  • Koo, Bon Hyo;Na, Kyung Joon;Lee, Jin Hoo;Hong, Sung Wan
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.14 no.1
    • /
    • pp.203-216
    • /
    • 1994
  • The laboratory methods for compaction of soil (KSF 2312) and for moisture of soil (KSF 2306) in combination with the soil density in place by the sand-cone method (KSF 2311) are generally used for compaction control of soils. However, these methods have limitations in number of test and in accuracy. ]n addition, they are time-consuming. Therefore, they are not adequate for speedy control of embankment compaction in a project with huge amount of earthwork. The RI (Radioisotope) gauges for measurement of soil density and/or of soil moisture are widely used for the compaction control of soils in many countries. But in Korea, they have had a limited usage and available informations for uses of RI gauges are insufficient. Therefore, this study promotes efficient and safe use of RI gauges in geotechnical engineering. In this paper, fundamental aspects such as the priciples of RI gauges, gauge inspection techniques and the applicability and limitations of RI gauges for field usage were reviewed. And a new calibration curves suitable for the Korean soils were suggested.

  • PDF