• Title/Summary/Keyword: compaction degree

Search Result 141, Processing Time 0.024 seconds

Dependence of Compaction Behavior of Spray-Dried Ferrite Powders on the Kinds and Concentrations of Binder Systems (결합제의 종류와 양에 따라 분무건조된 페라이트 분말의 성형특성)

  • 홍대영;변순천;제해준;홍국선
    • Journal of the Korean Ceramic Society
    • /
    • v.32 no.9
    • /
    • pp.1047-1055
    • /
    • 1995
  • Mn-Zn ferrite granules were formed by a spray-drying method of the slurry containing different kinds and concentrations of binders at various temperatures. The slurry was made by conventional ceramic processing method, that is, by mixing Fe2O3, MnO, ZnO powders (52 : 24 : 24 mol%), calcining and milling. Typical shape of the spray dried granules was spherical. The compaction behavior of these granules was dependent on the spray-drying temperature and the kind and concentration of binders. At lower pressure the granules were displaced and at higher pressure the granules were deformed and fractured to fill pores among the granules. The optimum concentration of the binder was 0.5wt%. The granules containing 0.5wt% PVA 205 were deformed and fractured well and the green density was higher than others. At higher concentrations of the binder the granules were deformed rather than fractured, therefore the green density was lowered because of the remaining unfilled pores. The decomposition temperature and the heat released were increased with increasing the concentration of the binders. The compaction response of the granules containing PVA 205 was more efficient than those containing PVA 217 and PVA 117. Green density was not dependent on the degree of hydrolysis of the binders. The compaction response of the granules spray-dried at 15$0^{\circ}C$ was most efficient.

  • PDF

Damage constitutive model of brittle rock considering the compaction of crack

  • Gu, Qingheng;Ning, Jianguo;Tan, Yunliang;Liu, Xuesheng;Ma, Qing;Xu, Qiang
    • Geomechanics and Engineering
    • /
    • v.15 no.5
    • /
    • pp.1081-1089
    • /
    • 2018
  • The deformation and strength of brittle rocks are significantly influenced by the crack closure behavior. The relationship between the strength and deformation of rocks under uniaxial loading is the foundation for design and assessment of such scenarios. The concept of relative crack closure strain was proposed to describe the influence of the crack closure behavior on the deformation and strength of rocks. Considering the crack compaction effect, a new damage constitutive model was developed based on accumulated AE counts. First, a damage variable based on the accumulated AE counts was introduced, and the damage evolution equations for the four types of brittle rocks were then derived. Second, a compaction coefficient was proposed to describe the compaction degree and a correction factor was proposed to correct the error in the effective elastic modulus instead of the elastic modulus of the rock without new damage. Finally, the compaction coefficient and correction factor were used to modify the damage constitutive model obtained using the Lemaitre strain equivalence hypothesis. The fitted results of the models were then compared with the experimental data. The results showed that the uniaxial compressive strength and effective elastic modulus decrease with an increase in the relative crack closure strain. The values of the damage variables increase exponentially with strains. The modified damage constitutive equation can be used to more accurately describe the compressive deformation (particularly the compaction stage) of the four types of brittle rocks, with a coefficient of determination greater than 0.9.

Investigation on the Repeatability of Modified Proctor Test for Roller Compacted Concrete Pavement (롤러 전압 콘크리트 포장을 위한 수정다짐시험의 반복재현성 고찰)

  • Hwang, Seok Hee;Rith, Makara;Hong, Seong Jae;Lee, Seung Woo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.35 no.4
    • /
    • pp.931-940
    • /
    • 2015
  • Roller Compacted Concrete Pavement (RCCP), is a type of pavement using compaction roller and asphalt finisher on concrete mixture that contains low amount of water. RCCP strength and durability are greatly affected by compaction level. Quality control is performed by ensuring the degree of compaction at site based on dry density. In the field, Modified Proctor Test is used in order to obtain optimum dry density. However, there is no clear compaction curve analysis criteria of Modified Proctor Test for RCCP. In this study, compaction curve built by three samples of Modified Proctor Test was produced and it was used to compare with compaction curve contented lower number of samples (one and two samples) in order to analyze their reliability. Thus, a conclusion was drawn from the results; by comparing to the result from Modified Proctor Test of three samples, the use of two samples represented result with only 0.5% of error which means the reliability is 99.5%.

A Study on Establishing the Subbase Compaction Control Method based on the In-situ Elastic modulus (현장탄성계수에 근거한 보조기층 다짐관리방안 연구)

  • Choi, Jun-Seong;Kim, Jong-Min;Han, Jin-Seok;Kim, Bu-Il
    • International Journal of Highway Engineering
    • /
    • v.13 no.1
    • /
    • pp.33-40
    • /
    • 2011
  • The resilient modulus which is presented mechanical properties of compacted subbase material is the design parameter on the Mechanistic - Empirical pavement design guide. The compaction control method on the Mechanistic - Empirical pavement design guide will be the way to confirm whether the in-situ elastic modulus measured after the compaction meets the resilient modulus which is applied the design. The resilient modulus in this study is calculated by the neural network suggested by Korea Pavement Research Program, and degree of compaction as the existing compaction control test and plate bearing capacity test(PBT) was performed to confirm whether the in-situ elastic modulus is measured. The Light Falling Weight Deflectometer(LFWD) is additionally tested for correlation analysis between each in-situ elastic modulus and resilient modulus, and is proposed correlation equation and test interval which can reduced overall testing cost. Also, the subbase compaction control procedure based on the in-situ elastic modulus is proposed using the in-situ PBT and LFWD test result.

A Study on the Estimation of Relative Compaction on the Subgrade using a Portable FWD (소형 FWD를 이용한 노상토의 다짐도 추정에 관한 연구)

  • Kang, Hee-Bog;Kim, Kyo-Jun;Kang, Jin-Tae;Kim, Jong-Ryeol
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.11 no.6
    • /
    • pp.213-219
    • /
    • 2007
  • This study was intended to estimate of relative compaction on the ground under the load using of portable FWD. The outcome in the wake of the study is highlighted as below. Viewing the variation of dynamic deflection modulus depending on a number of compaction, when a number of compaction increased to 8 (18.3MPa) from 4 (15Mpa), a dynamic deflection modulus increased 27%, and when a number reached to 12 (27.9MPa), it doubled the value indicated in 4. Viewing the relationship between dry density and dynamic deflection modulus in line with the increase in a number of compaction, a number of compaction by the roller reaching to the degree of compaction equivalent to 95% of max dry density was 13, with a dynamic deflection modulus indicating 27MPa ~ 29MPa.

Correlation Between Physical and Compaction Characteristics of Various Soils (다양한 지반의 물리적 특성과 다짐특성 상관성)

  • Park, Choonsik;Kim, Jonghwan
    • Journal of the Korean GEO-environmental Society
    • /
    • v.18 no.1
    • /
    • pp.23-29
    • /
    • 2017
  • This study, to provide quantitative data related to compaction characteristics, identifies the compaction characteristics of various types of soil samplers, in relation to their particle-size distribution and plasticity degree, and the compaction characteristics of artificially created granular materials, in relation to their A & D compaction. The results of the experiments show as follows. $r_{dmax}$ of clay is less than those of both sand and gravel approximately by 10%. O.M.C of clay has turned out to be greater than sand and gravel approximately by 20% and 30%, respectively. Changes in the compaction characteristics can be observed clearly around 30~60% of sand and 30~50% of passing No.200 sieve. It has also been shown that the compaction characteristics related to LL and PL are similar to each other in changes, and that the compaction characteristics become less clear with higher percent of fine grained soil. The compaction characteristics of the artificially created granular materials and field materials have appeared almost similar to each other. $r_{dmax}$ is less approximately by 30% and O.M.C greater approximately by 20% in A compaction than in D compaction. As $r_{dmax}$ and O.M.C become greater, its rate increases.

Field and laboratory assessment of ground subsidence induced by underground cavity under the sewer pipe

  • Kong, Suk-Min;Kim, Dong-Min;Lee, Dae-Young;Jung, Hyuk-Sang;Lee, Yong-Joo
    • Geomechanics and Engineering
    • /
    • v.16 no.3
    • /
    • pp.285-293
    • /
    • 2018
  • In densely populated urban areas with a large amount of infrastructure, ground subsidence events can result in massive casualties and economic losses. In South Korea, the incidence of ground subsidence in urban areas has increased in recent years and the number of underground cavities suspected of causing such events has significantly increased. Therefore, it is essential to develop techniques to prevent the occurrence of underground and ground subsidence. In this study, a field test, laboratory test, and numerical analysis were conducted to determine the optimal compaction degree of the upper support layer of any underground cavity below the level of sewer pipes in order to prevent such cavities from collapsing and leading to ground subsidence accidents. During the field test, an underground cavity was simulated using ice, and the generation of the cavity was confirmed using ground penetrating radar. The ground investigation was performed using a cone penetration test, and the compaction of the ground where ground subsidence occurred was evaluated with a laboratory test. The behaviour of the ground under various conditions was predicted using a numerical analysis based on the data obtained from the field test and previous studies. Based on these results, the optimal compaction degree of the ground required to prevent the underground cavity from causing ground subsidence was predicted and presented.

Pullout Resistance of Geogrid Reinforced Soil according to Compaction Degree (흙의 다짐도에 따른 인발저항특성 연구)

  • 주재우;김병욱;박종범
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 1999.11c
    • /
    • pp.11-20
    • /
    • 1999
  • The method which makes the soft ground reinforced by using the geogrid, a kind of geosynthetics has been getting popular and its usefulness also has been increased due to reduction in costs, ease of construction and great exterior view, But the study on the frictional characteristics, which is the important factor in design, between reinforcement and soil is insufficient. In this study, compaction degrees were considered through large-scale pullout tests. As a part of studying on estimation of pullout frictional characteristics between soil and geosynthetics, pullout tests were peformed and from the result of pullout tests, pullout frictional parameters between soil and geosynthetics were obtained and pullout behaviors were learned.

  • PDF

GEOTECHNICAL CHARACTERISTICS OF CRUDE OIL-CONTAMINATED GROUND (원유(Crude-Oil)로 오염된 지반의 역학적 특성)

  • 신은철;홍승서;강욱현
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 1997.05a
    • /
    • pp.43-46
    • /
    • 1997
  • The results of an investigation conducted to study the effect of crude oil contamination on the geotechnical properties of sand of presented. The effect of the degree of oil contamination on compaction characteristics, shear strength, and one-dimensional compression characteristics has been investigated. The test results indicate that the compaction characteristics are somewhat influenced by oil contamination. The angle of internal friction of sand (based on total stress basis) decreases due to the presence of oil within the pore spaces in sand. The compression characteristics of sand are significantly-influenced by oil contamination. The details of the tests conducted and the results are presented in the paper.

  • PDF

Compaction Management Criteria for Fill Materials of Concrete Faced Rockfill Dam (CFRD 축조재료의 다짐관리 기준)

  • Kim, Yong-Seong;Park, Han-Gyu;Lim, Heui-Dae
    • Proceedings of the Korean Society of Agricultural Engineers Conference
    • /
    • 2005.10a
    • /
    • pp.343-348
    • /
    • 2005
  • In this study, construction modulus, void ratio and settlement characteristics of 38 CFRD in domestic and foreign countries was investigated from monitoring data and the effect of field dry density and void ratio to dam body was analyzed. The standard void ratio of CFRD that can be easily used for dam designer and field engineer was proposed from the monitoring data. It was conformed that we can get the degree of compaction needed for reasonable compaction of dam body by calculating the field dry density from inverse operation of the standard void ratio. It was thought that the standard void ratio of CFRD is 0.2 as shape factor is under 4 and is 0.28 as shape factor is over 4.

  • PDF