• Title/Summary/Keyword: compact matrix

Search Result 126, Processing Time 0.026 seconds

Analytical Evaluation of the Surface Integral in the Singularity Methods (특이점분포법의 표면적분항의 해석적 계산)

  • Jung-Chun Suh
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.29 no.1
    • /
    • pp.14-28
    • /
    • 1992
  • For a planar curve-sided paned with constant or linear density distributions of source or doublet in the singularity methods, Cantaloube and Rehbach(1986) show that the surface integral can be transformed into contour integral by using Stokes' formulas. As an extension of their formulations, this paper deals with a planar polygonal panel for which we derive the closed-forms of the potentials and the velocities induced by the singularity distributions. Test calculations show that the analytical evaluation of the closed-forms is superior to numerical integration(suggested by Cantaloube and Rehbach) of the contour integral. The compact and explicit expressions may produce accurate values of matrix elements of simultaneous linear equations in the singularity methods with much reduced computer tiome.

  • PDF

Design and Fabrication of Triple-coupler Ring Resonator Filter (삼중 결합 링 공진기 필터의 설계 및 제작)

  • Lee, Young-Sik;Chung, Young-Chul
    • Korean Journal of Optics and Photonics
    • /
    • v.22 no.1
    • /
    • pp.40-45
    • /
    • 2011
  • Design and fabrication of a TCRR (Triple-coupler Ring Resonator) filter which can provide a doubled FSR (Free Spectral Range) compared with a conventional DCRR (Double-coupler Ring Resonator) filter, are discussed. Through the use of a polymer material with a good thermo-optic property and with high contrast between core and cladding polymer, a compact TCRR filter composed of straight and curved buried waveguides of small radius is designed and fabricated. The transmission characteristics from the through and drop ports are measured using a tunable laser and a fiber array block, and the FSR is observed to be 4.4 nm, about twice that of DCRR filter, and almost the same as that obtained from the analysis using a transfer matrix method.

Evolution of Microstructure and Mechanical Properties of Porous Al Alloy Under Various Heat Treatment (열처리에 따른 다공성 알루미늄 합금 재료의 미세구조와 기계적 성질 변화)

  • 류관무;권영재;김준규;조원승;조남희;황진명;유연철
    • Transactions of Materials Processing
    • /
    • v.12 no.6
    • /
    • pp.588-596
    • /
    • 2003
  • The relationships between evolution of microstructure and mechanical properties of porous Al-3Si-2Mg-2Cu alloy after the foaming and various heat treating were investigated. The foamed alloy having various densities were manufactured by powder compact foaming and heat treated. Then compression test was performed with deformation rate of 0.5/s. The ultimate compression strength was not changed after solution heat treatment but the flow curve after ultimate strength showed very smooth and uniform plateau region. This change of flow curve means that the deformation mechanism is altered from brittle fracture to ductile deformation and the energy absorption property of Al foam is dramatically improved. The improvement of energy absorption without any detriment of mechanical properties is due to that the very brittle precipitation like Al-Cu and Al-Mg was uniformly dissolved in Al matrix after solution heat treatment. And various mechanical properties of Al alloy porous material were improved by 40% with aging of $200^{\circ}C$ and 50min. These improvements are ascribe to the various fine precipitates like $\Omega$ and $\theta$'.

Shock-wave Synthesis of Titanium Diboride in Copper Matrix and Compaction of $TiB_2$-Cu Nanocomposites

  • Lomovsky, O.I.;Mali, V.I.;Dudina, D.V.;Korchagin, M.A.;Kwon, D.H.;Kim, J.S.;Kwon, Y.S.
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09b
    • /
    • pp.1084-1085
    • /
    • 2006
  • We studied formation of nanostructured $TiB_2$-Cu composites under shock wave conditions. We investigated the influence of preliminary mechanical activation (MA) of Ti-B-Cu powder mixtures on the peculiarities of the reaction between Ti and B under shock wave. In the MA-ed mixture the reaction proceeded completely while in the non-activated mixture the reagents remained along with the product . titanium diboride. The size of titanium diboride particles in the central part of the compact was 100-300 nm.

  • PDF

Thermal Stability of Al-Fe-X Alloy System Prepared by Mechanical Alloying and Spark Plasma Sintering: I. Al-Fe (기계적 합금화 및 스파크 플라즈마 소결에 의해 제조된 Al-Fe-X계 합금의 열적 안정성: I. Al-Fe)

  • Lee, Hyun-Kwuon;Lee, Sang-Woo;Cho, Kyeong-Sik
    • Journal of Powder Materials
    • /
    • v.12 no.1
    • /
    • pp.70-78
    • /
    • 2005
  • Mechanical alloying using high-energy ball mill and subsequent spark plasma sintering (SPS) process was applied to understand mechanical alloying processing of Al-Fe alloy system. The thermal stability of mechanically alloyed Al-Fe alloy was intended to be enhanced by SPS process. Various analytical techniques including particle size analysis, density measurement, micro-Vickers hardness test, SEM, TEM, and X-ray diffractometry were adopted to find optimum processing conditions for mechanical alloying and subsequent SPS and to estimate thermal stability of the prepared alloy. It was found from the treatment of mechanically alloyed Al-8wt.%Fe powder mixture that needle-shaped $Al_3Fe$ precipitates was formed in the Al-Fe matrix, and the alloy compact showed enhanced densification and reached its full density with little loss of its fine microstructure. After heat treatment at $500^{\circC}$, it was also shown that the thermal stability of Al-8wt.%Fe alloy fabricated in the present study was enhanced, which was due to its fine microstructure developed by fast densification of SPS.

Design of a Low-Order Sensorless Controller by Robust H∞ Control for Boost Converters

  • Li, Xutao;Chen, Minjie;Shinohara, Hirofumi;Yoshihara, Tsutomu
    • Journal of Power Electronics
    • /
    • v.16 no.3
    • /
    • pp.1025-1035
    • /
    • 2016
  • Luenberger observer (LO)-based sensorless multi-loop control of a converter requires an iterative trial-and-error design process, considering that many parameters should be determined, and loop gains are indirectly related to the closed-loop characteristics. Robust H∞ control adopts a compact sensorless controller. The algebraic Riccati equation (ARE)-based and linear matrix inequality (LMI)-based H∞ approaches need an exhaustive procedure, particularly for a low-order controller. Therefore, in this study, a novel robust H∞ synthesis approach is proposed to design a low-order sensorless controller for boost converters, which need not solve any ARE or LMI, and to parameterize the controller by an adjustable parameter behaving like a "knob" on the closed-loop characteristics. Simulation results show the straightforward closed-loop characteristics evaluation and better dynamic performance by the proposed H∞ approach, compared with the LO-based sensorless multi-loop control. Practical experiments on a digital processor confirmed the simulation results.

Design and Implementation of Isolator for PCS Phone (PCS단말기용 아이솔레이터의 설계제작)

  • Gwon, Won-Hyeon;Kim, Tae-Hyeon;Lee, Yeong-Hun
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.37 no.3
    • /
    • pp.49-57
    • /
    • 2000
  • In this paper, lumped-element isolator is analyzed and designed using the scattering matrix approach. Using the designed parameters, compact isolator with 7.0x7.0x2.3 mm$^3$ dimensions is fabricated and tested in 1.765GHz PCS phone band. Implemented isolator shows 29.95dB isolation characteristic at center frequency and has 0.35dB insertion loss in overall 30MHz operating bandwidth. Return losses of input and output port are measured below -19 dB. Experimental results show that the implemented isolator has better performances than the conventional one.

  • PDF

Development of gradient composite shielding material for shielding neutrons and gamma rays

  • Hu, Guang;Shi, Guang;Hu, Huasi;Yang, Quanzhan;Yu, Bo;Sun, Weiqiang
    • Nuclear Engineering and Technology
    • /
    • v.52 no.10
    • /
    • pp.2387-2393
    • /
    • 2020
  • In this study, a gradient material for shielding neutrons and gamma rays was developed, which consists of epoxy resin, boron carbide (B4C), lead (Pb) and a little graphene oxide. It aims light weight and compact, which will be applied on the transportable nuclear reactor. The material is made up of sixteen layers, and the thickness and components of each layer were designed by genetic algorithm (GA) combined with Monte Carlo N Particle Transport (MCNP). In the experiment, the viscosities of the epoxy at different temperatures were tested, and the settlement regularity of Pb particles and B4C particles in the epoxy was simulated by matlab software. The material was manufactured at 25 ℃, the Pb C and O elements of which were also tested, and the result was compared with the outcome of the simulation. Finally, the material's shielding performance was simulated by MCNP and compared with the uniformity material's. The result shows that the shielding performance of gradient material is more effective than that of the uniformity material, and the difference is most noticeable when the materials are 30 cm thick.

The Influence of Powder Size on Mechanical Properties of Small MIM Parts

  • Yasui, Noriyuki;Satomi, Hiroshi;Fujiwara, Hiroshi;Ameyama, Kei;Kankawa, Yoshimitsu
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09a
    • /
    • pp.39-40
    • /
    • 2006
  • The relationship between the powder particle size change and a mechanical property of the Metal Injection Molding (MIM) product was examined in detail. The XRD results indicate that the diffraction peaks of BCC appeared in compacts of powder particle size of 4 to $10{\mu}m$ as well as the bulk SUS630. However, the diffraction peaks from both BCC and FCC were observed in the compact with powder size less than $3{\mu}m$. TEM observation revealed that the powder with those BCC/FCC two phase structure have a finely dispersed $SiO_2$ precipitates. Because the Si is ferrite stabilizing element, decrease of Si composition in the matrix phase by the $SiO_2$ precipitation resulted in formation of the retained austenite. Therefore, controlling the elements such as Si as well as oxygen decrease is very important to obtain a normal microstructure in ultra-fine powder $(<3{\mu}m)$ injection molding.

  • PDF

Synthesis and Properties of Bio-Thermoplastic Polyurethanes with Different Isocyanate Contents

  • Li, Xiang Xu;Sohn, Mi Hyun;Cho, Ur Ryong
    • Elastomers and Composites
    • /
    • v.54 no.3
    • /
    • pp.225-231
    • /
    • 2019
  • Bio-based polyester polyol was synthesized via esterification between azelaic acid and isosorbide. After esterification, bio-based polyurethanes were synthesized using polyester polyol, 1,3-propanediol as the chain extender, and 4,4'-diphenylmethane diisocyanate, in mixing ratios of 1:1:1.5, 1:1:1.8, 1:1:2, and 1:1:2.3. The bio TPU (Thermoplastic Polyurethane) samples were characterized by using FT-IR (Fourier Transform Infrared Spectroscopy), TGA (Thermal Gravimetric Analysis), DSC (Differential Scanning Calorimetry), and GPC (Gel Permeation Chromatography). The mechanical properties (tensile stress and hardness) were obtained by using UTM, a Shore A tester, and a Taber abrasion tester. The viscoelastic properties were tested by an Rubber Processing Analyzer in dynamic strain sweep and dynamic frequency test modes. The chemical resistance was tested with methanol by using the swelling test method. Based on these results, the bio TPU synthesized with the ratio of 1:1:2.3, referred to as TPU 4, showed the highest thermal decomposition temperature, the largest molecular weight, and most compact matrix structure due to the highest ratio of the hard segment in the molecular structure. It also presented the highest tensile strength, the largest elongation, and the best viscoelastic properties among the different bio TPUs synthesized herein.