DOI QR코드

DOI QR Code

Design and Fabrication of Triple-coupler Ring Resonator Filter

삼중 결합 링 공진기 필터의 설계 및 제작

  • Lee, Young-Sik (Department of Electronics and Communications Engineering, Kwangwoon University) ;
  • Chung, Young-Chul (Department of Electronics and Communications Engineering, Kwangwoon University)
  • 이영식 (광운대학교 전자통신공학과) ;
  • 정영철 (광운대학교 전자통신공학과)
  • Received : 2011.01.10
  • Accepted : 2011.02.14
  • Published : 2011.02.25

Abstract

Design and fabrication of a TCRR (Triple-coupler Ring Resonator) filter which can provide a doubled FSR (Free Spectral Range) compared with a conventional DCRR (Double-coupler Ring Resonator) filter, are discussed. Through the use of a polymer material with a good thermo-optic property and with high contrast between core and cladding polymer, a compact TCRR filter composed of straight and curved buried waveguides of small radius is designed and fabricated. The transmission characteristics from the through and drop ports are measured using a tunable laser and a fiber array block, and the FSR is observed to be 4.4 nm, about twice that of DCRR filter, and almost the same as that obtained from the analysis using a transfer matrix method.

동일한 주회 길이의 통상적인 DCRR (Double-coupler Ring Resonator) 에 비하여 두 배의 FSR (Free Spectral Range) 성능을 나타낼 수 있는 TCRR (Triple-coupler Ring Resonator: 삼중 결합 링 공진기) 필터의 설계 및 제작에 대하여 논의하였다. 열-광학 특성이 우수하고, 코어-클래딩 굴절률 차가 큰 폴리머 물질을 이용하여 작은 반경의 곡선도파로가 가능한 매립형 도파구조의 컴팩트한 TCRR 필터를 설계 및 제작하였다. 파장가변 레이저와 광섬유 배열 블록을 이용하여 TCRR 필터의 Through 및 Drop 포트 출력 특성을 측정한 결과, DCRR 필터의 두 배인 4.4 nm의 FSR을 확인하였고, 이는 전달행렬 방법을 이용하여 해석한 결과와 거의 동일하였다.

Keywords

References

  1. A. A. Agarwal, P. Toliver, R. Menendez, S. Etemad, J. Jackel, J. Young, T. Banwell, B. E. Little, S. T. Chu, W. Chen, W. Chen, J. Hryniewicz, F. Johnson, D. Gill, O. King, R. Davidson, K. Donovan, and P. J. Delfyett, “Fully programmable ring-resonator-based integrated photonic circuit for phase coherent applications,” J. Lightwave Technol. 24, 77-87 (2006). https://doi.org/10.1109/JLT.2005.861145
  2. R. S. Tucker and J. L. Riding, “Optical ring-resonator randomaccess memories,” J. Lightwave Technol. 26, 320-328 (2008).
  3. H.-S. Lee, G.-D. Kim, and S.-S. Lee, “Highly sensitive integrated photonic temperature sensor exploiting a polymeric microring resonator,” Hankook Kwanghak Hoeji (Korean J. Opt. Photon.) 19, 224-228 (2008). https://doi.org/10.3807/HKH.2008.19.3.224
  4. G. N. Nielson, D. Seneviratne, F. Lopez-Royo, P. T. Rakich, Y. Avrahami, M. R. Watts, H. A. Haus, H. L. Tuller, and G. Barbastathis, “Integrated wavelength-selective optical MEMS switching using ring resonator filters,” IEEE Photon. Technol. Lett. 17, 1190-1192 (2005). https://doi.org/10.1109/LPT.2005.846951
  5. G. Griffel, “Synthesis of optical filters using ring resonator arrays,” IEEE Photon. Technol. Lett. 12, 810-812 (2000). https://doi.org/10.1109/68.853508
  6. H. Lee, G.-W. Kim, and Y.-C. Chung, “Hybrid-integrated tunable laser using polymer-ring resonator-based add/drop reflector and reflective semiconductor optical amplifier,” Korean J. Opt. Photon. (Hankook Kwanghak Hoeji) 20, 217-222 (2009). https://doi.org/10.3807/KJOP.2009.20.4.217
  7. G. Griffel, “Vernier effect in asymmetrical ring resonator array,” IEEE Photon. Technol. Lett. 12, 1642-1644 (2000). https://doi.org/10.1109/68.896334
  8. G. Barbarossa, A. M. Matteo, and M. N. Armenise, “Theoretical analysis of triple-coupler ring-based optical guided-wave resonator,” IEEE Photon. Technol. Lett. 13, 148-157 (1995). https://doi.org/10.1109/50.365200
  9. J. Poon, J. Scheuer, S. Mookherjea, G. Paloczi, Y. Huang, and A. Yariv, “Matrix analysis of microring coupled-resonator optical waveguide,” Opt. Express 12, 90-103 (2004). https://doi.org/10.1364/OPEX.12.000090