• Title/Summary/Keyword: compact integral operator

Search Result 13, Processing Time 0.016 seconds

STRICT TOPOLOGIES AND OPERATORS ON SPACES OF VECTOR-VALUED CONTINUOUS FUNCTIONS

  • Nowak, Marian
    • Journal of the Korean Mathematical Society
    • /
    • v.52 no.1
    • /
    • pp.177-190
    • /
    • 2015
  • Let X be a completely regular Hausdorff space, and E and F be Banach spaces. Let $C_{rc}(X,E)$ be the Banach space of all continuous functions $f:X{\rightarrow}E$ such that f(X) is a relatively compact set in E. We establish an integral representation theorem for bounded linear operators $T:C_{rc}(X,E){\rightarrow}F$. We characterize continuous operators from $C_{rc}(X,E)$, provided with the strict topologies ${\beta}_z(X,E)$ ($z={\sigma},{\tau}$) to F, in terms of their representing operator-valued measures.

Wavelet-Galerkin Scheme of Inhomogeneous Electromagnetic Problems in the time Domain

  • 정영욱;이용민;최진일;나극환;강준길;신철재
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.10 no.4
    • /
    • pp.550-563
    • /
    • 1999
  • A wavelet-Galerkin scheme based on the time-dependent Maxwell's equations is presented. Daubechies wavelet with two vanishing wavelet moments is expanded for basis function in spatial domain and Yee's leap-frog approach is applied. The shifted interpolation property of Daubechies wavelet family leads to the simplified formulations for inhomogeneous media without the additional matrices for the integral or material operator. The stability condition is formulated. The dispersion characteristics are analyzed and compared with those of finite difference time domain and multiresolution time domain methods. The analyses show the excellent trade-off between the regularity and the support width of the basis function. Although the basis function has only two vanishing wavelet moments, it is enough to provide negligible dispersive error in the numerical analysis and its compact support enables only several involved terms per nodes. The storage effectiveness, execution time reduction and accuracy of this scheme are demonstrated by calculating the resonant frequencies of the homogeneous and inhomogeneous cavities.

  • PDF

CHARACTERIZATION OF FUNCTIONS VIA COMMUTATORS OF BILINEAR FRACTIONAL INTEGRALS ON MORREY SPACES

  • Mao, Suzhen;Wu, Huoxiong
    • Bulletin of the Korean Mathematical Society
    • /
    • v.53 no.4
    • /
    • pp.1071-1085
    • /
    • 2016
  • For $b{\in}L^1_{loc}({\mathbb{R}}^n)$, let ${\mathcal{I}}_{\alpha}$ be the bilinear fractional integral operator, and $[b,{\mathcal{I}}_{\alpha}]_i$ be the commutator of ${\mathcal{I}}_{\alpha}$ with pointwise multiplication b (i = 1, 2). This paper shows that if the commutator $[b,{\mathcal{I}}_{\alpha}]_i$ for i = 1 or 2 is bounded from the product Morrey spaces $L^{p_1,{\lambda}_1}({\mathbb{R}}^n){\times}L^{p_2,{\lambda}_2}({\mathbb{R}}^n)$ to the Morrey space $L^{q,{\lambda}}({\mathbb{R}}^n)$ for some suitable indexes ${\lambda}$, ${\lambda}_1$, ${\lambda}_2$ and $p_1$, $p_2$, q, then $b{\in}BMO({\mathbb{R}}^n)$, as well as that the compactness of $[b,{\mathcal{I}}_{\alpha}]_i$ for i = 1 or 2 from $L^{p_1,{\lambda}_1}({\mathbb{R}}^n){\times}L^{p_2,{\lambda}_2}({\mathbb{R}}^n)$ to $L^{q,{\lambda}}({\mathbb{R}}^n)$ implies that $b{\in}CMO({\mathbb{R}}^n)$ (the closure in $BMO({\mathbb{R}}^n)$of the space of $C^{\infty}({\mathbb{R}}^n)$ functions with compact support). These results together with some previous ones give a new characterization of $BMO({\mathbb{R}}^n)$ functions or $CMO({\mathbb{R}}^n)$ functions in essential ways.