• Title/Summary/Keyword: communication platform

Search Result 2,060, Processing Time 0.032 seconds

Exploring Social Media Technologies Awareness and Use among Postgraduate Students of Library and Information Science in Nigeria: An Investigative Study

  • Stella Chinnaya Nduka;Sunday Olanrewaju Popoola
    • International Journal of Knowledge Content Development & Technology
    • /
    • v.14 no.3
    • /
    • pp.59-76
    • /
    • 2024
  • The prominent role accorded to social media in the academic community for research, teaching and learning revolves around its significance among users. Social media offers a platform for individuals to engage with and share perceptions relating to different disciplines. This current research was conducted to investigate the level of awareness and frequency of social media technology use among postgraduate students of Library and Information Science in Nigerian universities. The descriptive survey design was used for the study. Structured questionnaires were used to collect data from 919 library and information science (LIS) postgraduate students in the universities. In all, 742 copies out of the 919 distributed were returned and found usable, thereby making the return rate to be 81%. Data collected were analysed using mean and standard deviation. The study revealed that the LIS postgraduate students frequently use social media such as Wikipedia (x=3.94>3.50), Instagram (x=3.86>3.50), Facebook (x=3.85>3.50), Zoom ($\overline{x}$=3.78>3.50), LinkedIn (x=3.69>3.50), YouTube ($\overline{x}$=3.54>3.50), Twitter (x=3.52>3.50). The study established that students use social media tools for their personal, professional and research activities. The study also found that the level of awareness and use of social media by the students was high. The study recommended that the use of social media should be incorporated into the LIS curriculum including training sessions for the students on how to use the media effectively.

Social Networks As A Tool Of Marketing Communications

  • Nataliia Liashuk
    • International Journal of Computer Science & Network Security
    • /
    • v.23 no.12
    • /
    • pp.137-144
    • /
    • 2023
  • The relevance of the research topic lies in the necessity to use social networks as innovative tools of marketing communications. A wide audience and the ability to segment the market for a specific consumer determine the construction of a corporate strategy, which will be based on using the social networking approach. The spread of the global coronavirus pandemic has led to the rapid development of remote communication channels between the company and the customer. The issue of using marketing tools in social networks acquires the most urgent importance in the modern world of the introduction and implementation of the company's marketing strategies. The purpose of the academic paper is to study the use of social networks as features of implementing the marketing campaign. Social networks are the result of the development of digital technologies and the processes of creating an information society involved in the digital space. The objectives of the research are to analyse the opportunity of using social networks as a tool for marketing communications and their implementation at the level of its widespread use by enterprises and establishments. It is significant to create an advertising campaign by defining the target audience and outlining the key aspects, on which the company is focused. The research methodology consists in determining the theoretical and methodological approaches to the essence of introducing social networks and their practical importance in the implementation of marketing activities of companies. The obtained results can significantly improve the quality of functioning of modern enterprises and organizations that plan to master a new market segment or gain competitive advantages in the existing one. The academic paper examines the essence of social networks as a tool of marketing communications. The key principles of the development of digital social platforms were revealed. The quality of implementing the advertising campaign in the social network was studied, and further prospects for the development of using social networks as a component of the marketing strategy were outlined. Therefore, the academic paper analyses the problems of using social networks as a marketing tool.

Identification with avatar and self-reference effects: Impact on perceived attributes and purchase intentions (아바타와의 동일시가 가상 패션 아이템 속성 지각 및 구매의도에 미치는 영향)

  • Woojin Choi;Yuri Lee
    • Journal of Fashion Business
    • /
    • v.28 no.2
    • /
    • pp.1-14
    • /
    • 2024
  • Within the metaverse platform, users engage in communication with others through 'avatars' reflecting their own identities. Users experience various virtual fashion items through avatars, and the fashion industry anticipates avatars wearing virtual fashion items as an emerging business opportunity. Many fashion brands are currently releasing virtual fashion items specifically designed for avatars. In this study, we examined the impact of user identification with their avatar on their perception of the attributes of virtual fashion items (investment attractiveness, scarcity, playfulness, and aesthetics) and its influence on behavioral intentions. The research involved a survey of 250 females with prior knowledge of the metaverse. Structural equation modeling analysis was conducted to examine research hypotheses and validate the model. The results confirmed that as users within the metaverse perceive greater identification with their avatar, they also perceive the attributes of virtual fashion items more favorably. This finding affirms the self-reference effect, where users positively evaluate objects associated with themselves. Additionally, perceiving the attributes of virtual fashion items was found to be positively linked to purchase intentions for virtual products and actual interest in the brand. Lastly, a higher intention to purchase virtual fashion items was associated with forming a more favorable attitude toward the respective brand. Consequently, this study provides academic and practical implications for marketing strategies within the metaverse, emphasizing the active utilization of avatars and elements that facilitate user-avatar identification for effective engagement.

Study on Chinese Consumers' Perceptions of Samsung Smartphones through Social Media Data Analysis (소셜 미디어 데이터 분석을 통한 중국 소비자의 삼성 스마트폰에 대한 인식 연구)

  • Cui Ran;Inyong Nam
    • The Journal of the Convergence on Culture Technology
    • /
    • v.10 no.4
    • /
    • pp.311-321
    • /
    • 2024
  • This study comprehensively analyzed the perceptions of Chinese consumers who have and have not purchased Samsung smartphones, based on data from the social media platform Weibo. Various big data analysis techniques were used, including text mining, frequency analysis, centrality analysis, semantic network analysis, and CONCOR analysis. The results indicate that positive perceptions of Samsung smartphones include aspects such as design aesthetics, camera functionality, AI features, screen quality, specifications, and performance, and their status as a premium brand. On the other hand, negative perceptions include issues with pricing, a yellow tint in photos, slow charging speeds, and safety concerns. These findings will provide a crucial basis for making significant improvements in Samsung's market strategy in China.

Awareness and Application of Internet of Things in Universities Libraries in Kwara State, Nigeria

  • Saliu Abdulfatai
    • International Journal of Knowledge Content Development & Technology
    • /
    • v.14 no.4
    • /
    • pp.65-84
    • /
    • 2024
  • The study was conducted on the awareness and application of internet of things in universities libraries in Kwara State, Nigeria. the study formulated used four research questions and used eighty five (85) samples as the population using total enumerative sampling techniques. A survey method was used in undertaking the study, in which answers were sought on the level of awareness of the internet of things in universities libraries in Kwara State, the extent of application of the internet of things in universities libraries in Kwara State, the benefit of internet of things in universities libraries in Kwara State, the challenges faced in the application of internet of things in universities libraries in Kwara State. The data collected from the study were analyzed using frequency tables and percentage. The study discovered that there the students are aware of the internet of things in universities libraries in Kwara State and the benefit of internet of a things include: Device in the IoT platforms are heterogeneous and are based on different hardware platforms and networks, It gives the high level of interoperability and interconnectivity, IoT platform has sensors which detect or measure any changes in the environment to generate data that can report on their status or even interact with the environment, IoT comes with the combination of algorithms and computation, software & hardware that makes it smart and Anything can be interconnected with the global information and communication infrastructure and the study identified data interpretation problem, Lack of skilled and specialized workers, Cost and Challenges in online security as well as Software complexity are major challenges faced in the application of internet of things in universities libraries in Kwara State. In conclusion the study made some recommendations which include that: Future libraries should be equipped with new technologies and networking devices as soon as possible. As this will be essential for users and librarians to have sufficient knowledge about IOT technologies.

Science and Technology ODA Promotion of Korea through ICT of Global Problem Solving Centers -Suggestion on the mid- and short-term projects promotion of science and technology ODA roadmap- (글로벌문제해결거점 ICT화를 통한 한국형 과학기술 ODA 추진 -과학기술 ODA 중·단기 과제 추진에 대한 제언-)

  • Jung, Woo-Kyun;Shin, Kwanwoo;Jeong, Seongpil;Park, Hunkyun;Park, Eun Sun;Ahn, Sung-Hoon
    • Journal of Appropriate Technology
    • /
    • v.7 no.2
    • /
    • pp.162-171
    • /
    • 2021
  • The Korean government proposed the K-SDGs in 2019 to promote the UN SDGs, but the role and tasks of science and technology, an important means of implementing the SDGs, have not been materialized. Accordingly, the role of science and technology ODA for the SDGs was established through the Ministry of Science and ICT's policy research project 'Science and Technology ODA Promotion Roadmap for Spreading the New Southern Policy and Realizing the 2030 SDGs'. In addition, goals, strategies, and core tasks for the next 10 years were derived in 10 fields such as water, climate change, energy, and ICT. In this paper, we analyze 30 key tasks of the ODA promotion roadmap for science and technology for the realization of SDGs, and propose mid- and short-term tasks and implementation plans for effective roadmap promotion. Among the key tasks in each field, four common elements were derived: ICT/smartization, a global problem-solving center, cooperation/communication platform, and business model/startup support platform/living lab that can create and integrate roadmap implementation conditions. In addition, the four mid- and short-term tasks, 1) Establishment of science and technology ODA network, 2) Establishment of living lab business platform linked to start-up support business, 3) Local smartization of recipient countries, and 4) Expand and secure sustainability of global problem-solving centers, were set in relation to the implementation of the detailed roadmap. For the derived mid- and short-term tasks, detailed implementation plans based on the ICTization of global problem-solving centers were presented. The implementation of the mid- and short-term tasks presented in this paper can contribute to the more effective achievement of the science and technology ODA roadmap, and it is expected that Korea's implementation of SDGs will also achieve high performance.

A study of Artificial Intelligence (AI) Speaker's Development Process in Terms of Social Constructivism: Focused on the Products and Periodic Co-revolution Process (인공지능(AI) 스피커에 대한 사회구성 차원의 발달과정 연구: 제품과 시기별 공진화 과정을 중심으로)

  • Cha, Hyeon-ju;Kweon, Sang-hee
    • Journal of Internet Computing and Services
    • /
    • v.22 no.1
    • /
    • pp.109-135
    • /
    • 2021
  • his study classified the development process of artificial intelligence (AI) speakers through analysis of the news text of artificial intelligence (AI) speakers shown in traditional news reports, and identified the characteristics of each product by period. The theoretical background used in the analysis are news frames and topic frames. As analysis methods, topic modeling and semantic network analysis using the LDA method were used. The research method was a content analysis method. From 2014 to 2019, 2710 news related to AI speakers were first collected, and secondly, topic frames were analyzed using Nodexl algorithm. The result of this study is that, first, the trend of topic frames by AI speaker provider type was different according to the characteristics of the four operators (communication service provider, online platform, OS provider, and IT device manufacturer). Specifically, online platform operators (Google, Naver, Amazon, Kakao) appeared as a frame that uses AI speakers as'search or input devices'. On the other hand, telecommunications operators (SKT, KT) showed prominent frames for IPTV, which is the parent company's flagship business, and 'auxiliary device' of the telecommunication business. Furthermore, the frame of "personalization of products and voice service" was remarkable for OS operators (MS, Apple), and the frame for IT device manufacturers (Samsung) was "Internet of Things (IoT) Integrated Intelligence System". The econd, result id that the trend of the topic frame by AI speaker development period (by year) showed a tendency to develop around AI technology in the first phase (2014-2016), and in the second phase (2017-2018), the social relationship between AI technology and users It was related to interaction, and in the third phase (2019), there was a trend of shifting from AI technology-centered to user-centered. As a result of QAP analysis, it was found that news frames by business operator and development period in AI speaker development are socially constituted by determinants of media discourse. The implication of this study was that the evolution of AI speakers was found by the characteristics of the parent company and the process of co-evolution due to interactions between users by business operator and development period. The implications of this study are that the results of this study are important indicators for predicting the future prospects of AI speakers and presenting directions accordingly.

Precision monitoring of radial growth of trees and micro-climate at a Korean Fir (Abies koreana Wilson) forest at 10 minutes interval in 2016 on Mt. Hallasan National Park, Jeju Island, Korea

  • Kim, Eun-Shik;Cho, Hong-Bum;Heo, Daeyoung;Kim, Nae-Soo;Kim, Young-Sun;Lee, Kyeseon;Lee, Sung-Hoon;Ryu, Jaehong
    • Journal of Ecology and Environment
    • /
    • v.43 no.2
    • /
    • pp.226-245
    • /
    • 2019
  • To understand the dynamics of radial growth of trees and micro-climate at a site of Korean fir (Abies koreana Wilson) forest on high-altitude area of Mt. Hallasan National Park, Jeju Island, Korea, high precision dendrometers were installed on the stems of Korean fir trees, and the sensors for measuring micro-climate of the forest at 10 minutes interval were also installed at the forest. Data from the sensors were sent to nodes, collected to a gateway wireless, and transmitted to a data server using mobile phone communication system. By analyzing the radial growth data for the trees during the growing season in 2016, we can estimate that the radial growth of Korean fir trees initiated in late April to early May and ceased in late August to early September, which indicates that period for the radial growth was about 4 months in 2016. It is interesting to observe that the daily ambient temperature and the daily soil temperature at the depth of 20 cm coincided with the values of about 10 ℃ when the radial growth of the trees initiated in 2016. When the radial growth ceased, the values of the ambient temperature went down below about 15 ℃ and 16 ℃, respectively. While the ambient temperature and the soil temperature are evaluated to be the good indicators for the initiation and the cessation of radial growth, it becomes clear that radii of tree stems showed diurnal growth patterns affected by diurnal change of ambient temperature. In addition, the wetting and drying of the surface of the tree stems affected by precipitation became the additional factors that affect the expansion and shrinkage of the tree stems at the forest site. While it is interesting to note that the interrelationships among the micro-climatic factors at the forest site were well explained through this study, it should be recognized that the precision monitoring made possible with the application of high resolution sensors in the measurement of the radial increment combined with the observation of 10 minutes interval with aids of information and communication technology in the ecosystem observation.

Design of Splunk Platform based Big Data Analysis System for Objectionable Information Detection (Splunk 플랫폼을 활용한 유해 정보 탐지를 위한 빅데이터 분석 시스템 설계)

  • Lee, Hyeop-Geon;Kim, Young-Woon;Kim, Ki-Young;Choi, Jong-Seok
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.11 no.1
    • /
    • pp.76-81
    • /
    • 2018
  • The Internet of Things (IoT), which is emerging as a future economic growth engine, has been actively introduced in areas close to our daily lives. However, there are still IoT security threats that need to be resolved. In particular, with the spread of smart homes and smart cities, an explosive amount of closed-circuit televisions (CCTVs) have been installed. The Internet protocol (IP) information and even port numbers assigned to CCTVs are open to the public via search engines of web portals or on social media platforms, such as Facebook and Twitter; even with simple tools these pieces of information can be easily hacked. For this reason, a big-data analytics system is needed, capable of supporting quick responses against data, that can potentially contain risk factors to security or illegal websites that may cause social problems, by assisting in analyzing data collected by search engines and social media platforms, frequently utilized by Internet users, as well as data on illegal websites.

A Study of Big data-based Machine Learning Techniques for Wheel and Bearing Fault Diagnosis (차륜 및 차축베어링 고장진단을 위한 빅데이터 기반 머신러닝 기법 연구)

  • Jung, Hoon;Park, Moonsung
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.1
    • /
    • pp.75-84
    • /
    • 2018
  • Increasing the operation rate of components and stabilizing the operation through timely management of the core parts are crucial for improving the efficiency of the railroad maintenance industry. The demand for diagnosis technology to assess the condition of rolling stock components, which employs history management and automated big data analysis, has increased to satisfy both aspects of increasing reliability and reducing the maintenance cost of the core components to cope with the trend of rapid maintenance. This study developed a big data platform-based system to manage the rolling stock component condition to acquire, process, and analyze the big data generated at onboard and wayside devices of railroad cars in real time. The system can monitor the conditions of the railroad car component and system resources in real time. The study also proposed a machine learning technique that enabled the distributed and parallel processing of the acquired big data and automatic component fault diagnosis. The test, which used the virtual instance generation system of the Amazon Web Service, proved that the algorithm applying the distributed and parallel technology decreased the runtime and confirmed the fault diagnosis model utilizing the random forest machine learning for predicting the condition of the bearing and wheel parts with 83% accuracy.