• 제목/요약/키워드: common-rail injection system

검색결과 165건 처리시간 0.023초

커먼레일 디젤 인젝터에서 연료 분사 및 분위기 압력이 DME 분무 특성에 미치는 영향 (Effect of High Injection Pressure and Ambient Pressure on the DME Spray Characteristics Injected Through a Common-rail Diesel Injector)

  • 김형준;박수한;이창식
    • 한국분무공학회지
    • /
    • 제14권2호
    • /
    • pp.71-76
    • /
    • 2009
  • The aim of this investigation is to study the effect of the high injection pressure on the dimethyl ether (DME) spray characteristics injected through a common-rail diesel injector under various ambient pressures. In order to investigate the effect of the injection pressure and ambient condition, the common-rail injection system with two high pressure pumps and high pressure chamber pressurized up to 40 bar were used, respectively. Spray images of DME fuel obtained from a visualization system composed of high speed camera and two metal halide lamps as the light source. From the obtained images, the spray behaviors such as a spray development process, spray tip penetration, spray width, and spray cone angle were measured for analyzing the DME spray characteristics under various experimental conditions. It was found that the spray development slowed as the ambient pressure increased and spray tip penetration at injection pressure of 90 MPa is longer than that at 50 MPa. In addition, the spray width at the end stage of injection decreased under the atmospheric conditions due to the evaporation property of DME fuel, and DME spray shows narrow spray cone angle according to the injection pressure increased.

  • PDF

고압 분사용 Piezo 인젝터의 Pilot 분무특성 (Pilot Spray Characteristics of Piezo type Injectors for High Pressure Injection)

  • 배장웅;김하늘;이진욱;강건용;류정인
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2004년도 춘계학술대회
    • /
    • pp.2076-2081
    • /
    • 2004
  • Future exhaust gas limits for diesel-driven passenger cars will force the automotive industry to significantly improve the performance of engine. Since modern common-rail injection systems deliver more degrees of freedom referring to the injection process, again the optimization of the injection process could offer a possibility to meet the exhaust gas limits. This study describes the characteristic the pilot spray structure of piezo-driven injector for a passenger car common-rail system to be applicable multiple injection caused by fast response rather than solenoid-driven injector. The piezo-driven injector is prototype injector with same needle chamber of solenoid injector and the solenoid-driven one is commercial injector. The pilot spray characteristic such as spray tip penetration, spray speed, spray angle were obtained by spray images, which is measured by the Mie scattering method with optical system for high-speed temporal photography. It was found that piezo-driven injector effected electric change as important factor and showed faster response than solenoid-driven injector.

  • PDF

축압식 고압 연료분사펌프 시스템 특성 해석 (Characteristics of a High Pressure Accumulator Type Fuel Injection System)

  • 박석범;구자예
    • 대한기계학회논문집B
    • /
    • 제22권8호
    • /
    • pp.1101-1110
    • /
    • 1998
  • Computational investigation was conducted to examine the performance of a high pressure common-rail fuel injection system which is used to power a passenger car direct injection (Dl) diesel engine. The pipe flows were modeled by one dimensional wave equation and solved by implicit FDM Each volume of injector was considered as chambers with orifice nozzle in connections. These simulation results were compared with the experimental data of Ganser Hydromag. The comparison of needle life and rate of injection between simulation data and experimental data showed quite a good agreement Different shape of injection rate can be made by adjusting the size of inlet orifice and exit orifice in the piston chamber The pilot injection was accomplished by adjusting command signal.

커먼레일시스템의 비증발 디젤 분무에서 분사율과 주변기체의 밀도에 따른 주변기체 유입 (Effect of Injection Rate and Gas Density on Ambient Gas Entrainment of Non-evaporating Transient Diesel Spray from Common-Rail Injection System)

  • 공장식;최욱;배충식;강진석
    • 한국자동차공학회논문집
    • /
    • 제12권5호
    • /
    • pp.19-24
    • /
    • 2004
  • Entrainment of ambient gas into a transient diesel spray is a crucial factor affecting the following preparation of combustible mixture. In this study, the entrainment characteristics of ambient gas for a non-evaporating transient diesel were investigated using a common-rail injection system. The effects of ambient gas density and nozzle hole geometry were assessed with entrainment coefficient. Laser Doppler Velocimetry (LDV) technique was introduced to measure the entrainment speed of ambient gas into a spray. There appeared a region where the entrainment coefficients remained almost constant while injection rates were still changing. The effect of common-rail pressure, which altered the slope of injection rate curve, was hardly noticed at this region. Entrainment coefficient increased with ambient gas density, that is, the effect of ambient gas density was greater than that of turbulent jet whose entrainment coefficient remained constant. The non-dimensional distance was defined to reflect the effect of nozzle hole diameter and ambient gas density together. The mean value of entrainment coefficient was found to increase with non-dimensional distance from the nozzle tip, which would be suggested as the guideline for the nozzle design.

커먼레일 시스템용 구동방식에 따른 인젝터별 바이오디젤 분무 특성 연구 (An Experimental Study on Spray Characteristics of Bio-diesel fuel in Three Injectors with Different Operating Mechanism for Common-rail System)

  • 성기수;김진수;정석철;이진욱
    • 한국분무공학회지
    • /
    • 제20권2호
    • /
    • pp.88-94
    • /
    • 2015
  • Recently, exhaust gas regulation has been gradually strengthened due to depletion of fossil fuels and environmental problem like a global warming. Due to this global problem, the demand for eco-friendly vehicle development is rapidly increasing. A clean diesel vehicle is considered as a realistic alternative. The common-rail fuel injection system, which is the key technology of the clean diesel vehicle, has adopted injection strategies such as high pressure injection, multiple injection for better atomization of the fuel. In addition, the emission regulations in the future is expected to be more stringent, which a conventional engine is difficult to deal with. One of the way for actively proceeding is the study of alternative fuels. Among them, the bio-diesel has been attracted as an alternative of diesel. So, in this study, spray characteristics of bio-diesel was analyzed in the common-rail fuel injection system with three injectors driven by different operating mechanism.

정적연소기에서 분위기 압력에 따른 Diesel-DME 혼합연료의 분무 특성에 관한 연구 (An Investigation on the Spray Characteristics of Diesel-DME Blended Fuel with Variation of Ambient Pressure in the Constant Volume Combustion Chamber)

  • 양지웅;이세준;임옥택
    • 한국분무공학회지
    • /
    • 제17권4호
    • /
    • pp.178-184
    • /
    • 2012
  • The aim of this study was to compare the spray characteristics of a typical fuel (100% diesel, DME) and diesel-DME blended fuel in a constant volume combustion chamber (CVCC). The typical fuel (100% diesel, DME) and diesel-DME blended fuel spray characteristics were investigated at various ambient pressures (pressurized nitrogen) and fuel injection pressures using a common rail fuel injection system when the fuel mixture ratio was varied. The fuel injection quantity and spray characteristics were measured including spray shape, penetration length, and spray angle. Common types of injectors were used.

SPRAY CHARACTERISTICS OF DME IN CONDITIONS OF COMMON RAIL INJECTION SYSTEM(II)

  • Hwang, J.S.;Ha, J.S.;No, S.Y.
    • International Journal of Automotive Technology
    • /
    • 제4권3호
    • /
    • pp.119-124
    • /
    • 2003
  • Dimethyl Ether (DME) is an excellent alternative fuel that provides lower particulate matter (PM) than diesel fuel under the same engine operating conditions. Spray characteristical of DME in common rail injection system were investigated within a constant volume chamber by using the particle motion analysis system. The injector used in this study has a single hole with the different orifice diameter of 0.2, 0.3 and 0.4 mm. The injection pressure was fixed at 35MPa and the ambient pressure was varied from 0.6 to 1.5 MPa. Spray characteristics such as spray angle, spray tip penetration and SMD (Sauter mean diameter) were measured. Spray angle was measured at 30d$_{0}$, downstream of the nozzle tip. The measured spray angie increased with increase in the ambient pressure. Increase of the ambient pressure results in a decrease of spray penetration. The experimental result, of spray penetration were compared with the predicted one by theoretical and empirical models. Increase in the ambient pressure and nozzle diameter results in an increase of SMD at a distance 30, 45 and 60d$_{0}$, downstream of the nozzle, respectively.ely.

고압 분사 디잴 인잭터의 노즐 형상이 분사 특성 및 분무 거동에 미치는 영향 (Effect of nozzle geometry on the injection characteristics and spray behavior)

  • 이창식;박성욱;전문수
    • 한국분무공학회지
    • /
    • 제9권1호
    • /
    • pp.1-7
    • /
    • 2004
  • This paper describes the characteristics of injection rate and macroscopic behavior of fuel spray injected from common-rail type diesel injectors with different nozzle geometries. The injection rates according to the nozzle geometries were measured at different energizing duration of the injector solenoid and injection pressure by using the Bosch's injection rate meter based on the pressure variation in the tube. The spray behaviors injected from the different nozzles were visualized using the spray visualization system composed of an Ar-ion laser, an ICCD camera, and a synchronization system at various injection and ambient pressures. It is revealed that VCO nozzle has higher spray tip velocity at the early stage of injection duration and wider spray cone angle than the mini-sac nozzles. Also the spray cone angle is increased with the increase of nozzle diameter.

  • PDF

바이패스 방식 피에조 인젝터의 피에조 적층 및 인가전압에 따른 연료분사 특성 연구 (A Study on Injection Characteristics of Piezo Injector with Bypass by Various Piezo Stack and Applied Voltage)

  • 조인수;김우택;이진욱
    • 한국분무공학회지
    • /
    • 제25권1호
    • /
    • pp.1-7
    • /
    • 2020
  • In the common rail fuel injection system, which is the core of diesel high efficiency and NOX reduction, injection strategies such as high pressure injection of fuel, accurate injection rate control, and multistage injection are important to increase fuel atomization. In this study, the bypass type piezo injector for the electronic control based common rail injection system applied to diesel fuel vehicle was studied. In particular, the injection rate and internal fuel flow characteristics of the high-pressure injector according to the piezo stacking number and applied voltage were analyzed by theoretical numerical method. When the applied voltage changes, it is determined that additional fuel flow through the bypass compensates for the reduced valve driving force due to the change in the driving voltage.

커먼레일용 연료분사 인젝터의 설계변수에 대한 민감도 분석 (Sensitivity Analysis on Design Parameters of the Fuel Injector for CRDI Engines)

  • 장주섭;윤영환
    • 한국자동차공학회논문집
    • /
    • 제17권5호
    • /
    • pp.107-114
    • /
    • 2009
  • A Common-Rail Direct Injection (CRDI) system for high speed diesel engines was developed to meet reductions of noise and vibration, emission regulations. High pressure in the common rail with electric control allows the fuel quantity and injection timing to be optimized and controlled throughout a wide range of engine velocity and load conditions. In this study, CRDI system analysis model which includes fuel and mechanical systems was developed using commercial software, AMESim in order to predict characteristics for various fuel injection components. The parameter sensitivity analysis such as throttle size, injection rate, plunger displacement, supply pressure of fuel injection for system design are carried out.