• Title/Summary/Keyword: commercial substrate

Search Result 309, Processing Time 0.027 seconds

Morphology Characteristics of Insulating Laser based on Aqueous Polymer Resin Fabricated by Ultrasonic Spray Coating Process (수성 폴리머 도료를 이용한 초음파 스프레이 공정으로 형성된 폴리머 절연층 미세구조 특성)

  • Yu, Jeong-Mo;Park, Chae-Won;Eom, Hyeon-Jin
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2016.11a
    • /
    • pp.136-136
    • /
    • 2016
  • Commonly used oil-based polymer resin has environmental and safety issues. Many researches for replacing the harmful solvent-borne resins to water-borne resins have been investigated to purify harmful environmental resources and follow the export and import of hazardous materials regulations. In this research, ultrasonic spray coatings of aqueous polymer resin were studied to fabricate thin insulating layer (${\sim}{\mu}m$) on the rectangular copper wire. It needs to have appropriate wettability between resin and substrate during the ultrasonic spray coating process to coat aqueous polymer uniformly. Furthermore, stabilities of coating solution and fabricating process are required to form thin insulating layer on the substrate. In here, physical characteristics such as viscosity of 6 types of commercial polymer dispersions and emersions were analyzed to confirm compatibility for ultrasonic spray coating process. These resins were dissolved in isopropyl alcohol, used for true solvent, and were diluted with ethanol, utilized for diluent. Also, solubilities, dispersion characteristics, and viscosities of these diluted polymer resin solutions were confirmed. Dispersion characteristic and viscosity of coating solution affects jetting of ultrasonic spray coating and these jetting characteristics influence morphologies of insulating layer. In conclusion, we have known that aqueous polymer solution should have outstanding dispersion characteristic and certain range of viscosity to fabricate thin polymer insulating layer uniformly with ultrasonic spray coating.

  • PDF

Selection of Heater Location in Linear Source for OLED Vapor Deposition (OLED 증착을 위한 선형증발원 히터 위치선정)

  • Joo, Young-Cheol;Han, Choong-Hwan;Um, Tai-Joon;Lee, Sang-Wook;Kim, Kug-Weon;Kwon, Kye-Si
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.14 no.6
    • /
    • pp.515-518
    • /
    • 2008
  • Organic light emitting diode(OLED) is one of the most promising type of future flat panel display. A linear source is used to deposite organic vapor to a large size OLED substrate. An electric heater which is attached on the side of linear source heats the organic powder for the sublimation. The nozzle of heater, which is attached at the top of the linear source has an optimal temperature. An numerical analysis has been performed to find optimal heater position for the optimal nozzle temperature. A commercial CFD program, FLUENT, is used on the analysis. Two-dimensional and three-dimensional analysis have been performed. The analysis showed that the heater should be attached at the outer side of crucible wall rather than inner side of housing, which was original design. Eighteen milimeter from the top of the linear source was suggested as the optimal position of heater. Improving thermal performance of linear source not only helps the uniformity of organic vapor deposition on the substrate but also increase productibity of vapor deposition process.

Design and Implementation of Miniature VCO using LTCC Technique (LTCC 기법을 이용한 초소형 VCO 설계 및 구현)

  • 김태현;권원현;이영훈
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.14 no.11
    • /
    • pp.1176-1183
    • /
    • 2003
  • In this paper, miniature voltage-controlled oscillator(VCO) for 1.6 ㎓ PCS band is designed and implemented using the LTCC technique. Circuit level design using commercial components is performed, and passive L, C elements embedded in LTCC substrate is optimized by simulation tools. Embedded passive components are modeled into equivalent circuits and their circuit parameters are extracted for circuit simulation. Utilizing the designed embedded passive elements and 21 layers LTCC substrate, VCO with 4.0${\times}$4.0${\times}$1.6 ㎣ dimensions is designed and fabricated. Developed VCO operates in 2.7 V with 8.5 ㎃ current consumption. The phase noise performance of VCO is below -112.61 ㏈c/㎐ at 100 ㎑ offset and harmonic suppression characteristics is measured above -30 ㏈.

The Effect of $Bi(OH)_3$ on Corrosion-Resistant Properties of Automotive Epoxy Primers

  • Yang, Wonseog;Min, Sungki;Hwang, Woon-suk
    • Corrosion Science and Technology
    • /
    • v.7 no.6
    • /
    • pp.370-374
    • /
    • 2008
  • In this study, we evaluated anti-corrosion properties of both commercial unleaded and lead epoxy primer for automotive substrate before applying to actual painting lines by salt spray test, and cyclic corrosion test, potentiodynamic test and electrochemical impedance spectroscopy. The difference in the corrosion resistance between automotive epoxy primers contained $Bi(OH)_{3}$ and leaded one was investigated. And it was also discussed the effect of zinc phosphate pretreatment to the epoxy primers. The specimen coated epoxy primer contained $Bi(OH)_{3}$ showed 0.5 V higher corrosion potential than that of bare steel. The result of salt spray test did not indicate remarkable difference of corrosion resistance in all specimens above $10{\mu}m$ thickness up to 1200 hours. In the cyclic corrosion test, epoxy primers contained $Bi(OH)_{3}$ on phosphated substrate performed good corrosion properties until 800 hours. The epoxy primer contained $Bi(OH)_{3}$ performed the equivalent corrosion resistance as leaded coating on phosphated steel, but slightly inferior to that of leaded on bare steel. These results show that the pre-treatment of zinc phosphate is effective as well as pigment changing in performing anti-corrosion properties in automotive bodies.

Synthesis of P2O5-V2O5-ZnO Glass Frit for Laser Sealing of OLED by the Addition of Filler (필러 첨가에 의한 OLED의 레이저 실링용 P2O5-V2O5-ZnO 유리프릿의 제조)

  • Bang, Jae-Chul
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.28 no.9
    • /
    • pp.571-576
    • /
    • 2015
  • In this study, we developed a lead-free $P_2O_5-V_2O_5-ZnO$ glass frit for sealing OLED using laser irradiation. The frit satisfied the characteristics required for laser sealing such as low glass transition temperature, low coefficient of thermal expansion (CTE), high water-resistance, and high absorption at the wavelength of the laser beam. Ceramic fillers were added to the glass frit in order to further reduce and match its CTE with that of the commercial glass substrate. The addition of Zirconium Tungsten Phosphate (ZWP) to the frit yielded the most desirable results, reducing the CTE to $45.4{\times}10^{-7}/^{\circ}C$, which is very close to that of the glass substrate ($44.0{\times}10^{-7}/^{\circ}C$). Successful formation of a solid sealing layer was observed by optical and scanning electron microscopy.

One point detection electrocardiography sensor using MEMS and flexible printed circuit technology (MEMS 기술과 유연인쇄회로기판 기술을 이용한 단일지점 검침 심전도 센서)

  • Kim, Hong-Lae;Lee, Chung-Il;Lee, Chung-Keun;Lee, Myoung-Ho;Kim, Hyun-Jun;Choi, Eui-Jung;Kim, Yong-Jun
    • Journal of Sensor Science and Technology
    • /
    • v.18 no.5
    • /
    • pp.359-364
    • /
    • 2009
  • This paper presents flexible electrocardiography(ECG) sensors using micro electro mechanical systems(MEMS) and flexible printed circuit(FPC) technology. By using FPC technology, ECG sensors which consisted of an outer hook-shaped electrode and an inner circular-shaped electrode were fabricated on the polyimide substrate. Thereafter, the bipolar ECG sensor was miniaturized using MEMS technology. The ECG measurement capability was examined by attaching the sensor to the human chest and wrist. Performance of the proposed sensors was then compared with ECG measured by commercial Ag/AgCl electrodes. It was verified that ECG could be measured using proposed sensors at only single body.

Laser Assisted Surface Alloying of Cast Iron with Thermal Sprayed Titanium Coatings (티타늄 용사피막을 이용한 주철의 레이저 표면합금화)

  • Park, Heung-Il;Kim, Sung-Gyoo;Lee, Byung-Woo
    • Journal of Korea Foundry Society
    • /
    • v.17 no.4
    • /
    • pp.393-401
    • /
    • 1997
  • Commercial flake graphite cast iron substrate was coated with titanium powder by low pressure plasma spraying and was irradiated with a $CO_2$ laser to produce the wear resistant composite layer. From the experimental results of this study, it was possible to composite TiC particles on the surface layer by direct reaction between carbon existed in the cast iron matrix and titanium with thermal sprayed coating by remelting and alloying them using laser irradiation. The cooling rate of laser remelted cast iron substrate without titanium coating was about $1{\times}10^4$ K/s to $1{\times}10^5$ K/s in the order under the condition used in this study. The microstructure of alloyed layer consisted of three zones, that is, TiC particule crystallized zone (MHV $400{\sim}500$), the mixed zone of TiC particule+ledebulite (MHV $650{\sim}900$) and the ledebulite zone (MHV $500{\sim}700$). TiC particules were crystallized as a typical dendritic morphology. The secondary TiC dendrite arms were grown to the polygonized shape and were necking. And then the separated arms became cubic crystal of TiC at the slowly solidified zone. But in the rapidly solidified zone of fusion boundry, the fine granular TiC particules were grouped like grape.

  • PDF

Structural and temperature coefficient of resistance characteristics of colossal magnetoresistance Mn oxides prepared by RF sputtering

  • Choi, Sun-Gyu;Ha, Tae-Jung;Reddy, A.Sivasankar;Yu, Byoung-Gon;Park, Hyung-Ho
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.11a
    • /
    • pp.361-361
    • /
    • 2007
  • A lot of efforts have been paid to develop infrared imaging systems in last decades. Bolometer has a wide range of applications from military to commercial, such as military night vision, medical imaging system and so on. Bolometer is a resistive sensor that detects temperature changes through resistance change. To improve detecting ability, bolometer should have a good resistive film which has high temperature coefficient of resistance (TCR) value. Colossal magnetoresistance (CMR) $L_{1-x}A_xMnO_3$ (where L and A are trivalent rare-earth ions and divalent alkaline earth ions, respectively.) are received attention to apply bolometer resistive film because it has a high TCR property which was discovered in the metal to semiconductor phase transition temperature region. In this work, CMR films were deposited on various substrates in relative low substrate temperature by RF magnetron sputtering. The influence of deposition parameters such as substrate temperature, gas partial pressure, and so on have been studied. The structural and TCR properties of the films were also investigated for applying to microbolometer.

  • PDF

Biocontrol of Potato White Mold Using Coniothyrium minitans and Resistance of Potato Cultivars to Sclerotinia sclerotiorum

  • Ojaghian, Mohammad Reza
    • The Plant Pathology Journal
    • /
    • v.26 no.4
    • /
    • pp.346-352
    • /
    • 2010
  • This study was conducted in Bahar and Lalehjin, Hamadan, Iran to assess the biocontrol efficacy of Coniothyrium minitans Campbell against potato white mold caused by Sclerotinia sclerotiorum (Lib.) de Bary under field and greenhouse conditions. In addition, the resistance of common potato cultivars against S. sclerotiorum was determined in a greenhouse experiment. After straw inoculation of six potato cultivars (Pashandi, Istambouli, Agria, Marfauna, Alpha and Spartaan) with S. sclerotiorum, the least disease severity was observed in Spartaan and Marfauna. Agria showed the most susceptibility to S. sclerotiorum. Compared with the healthy control, different concentrations of C. minitans conidia ($10^7$, $10^8$ and $10^9$ conidia/mL) reduced disease severity under greenhouse condition, and a concentration $10^9$ was the most effective treatment. During 2008 and 2009, four field trials were conducted to evaluate the efficacy of C. minitans in different soil and aerial applications on disease incidence of potato white mold. In 2008, soil application of $Contans^{(R)}$ WG (a commercial product of C. minitans) showed the greatest biocontrol capacity whereas soil application of solid-substrate C. minitans was found inferior when compared with other treatments in both Bahar and Lalehjin field sites. In 2009, benomyl application was the most effective treatment in reducing disease incidence in both tested field sites.

Effects of Wollastonite Coating on Surface Characteristics of Plasma Electrolytic Oxidized Ti-6Al-4V Alloy (플라즈마 전해 산화처리된 Ti-6Al-4V합금의 표면특성에 미치는 울라스토나이트 코팅효과)

  • Jaeeun Go;Jong Kook Lee;Han Cheol Choe
    • Corrosion Science and Technology
    • /
    • v.22 no.4
    • /
    • pp.257-264
    • /
    • 2023
  • Ti-6Al-4V alloys are mainly used as dental materials due to their excellent biocompatibility, corrosion resistance, and chemical stability. However, they have a low bioactivity with bioinertness in the body. Therefore, they could not directly bond with human bone. To improve their applications, their bone bonding ability and bone formation capacity should be improved. Thus, the objective of this study was to improve the bioinert surface of titanium alloy substrate to show bioactive characteristics by performing surface modification using wollastonite powder. Commercial bioactive wollastonite powder was successfully deposited onto Ti-6Al-4V alloy using a room temperature spray process. It was found that wollastonite-coated layer showed homogeneous microstructure and uniform thickness. Corrosion resistance of Ti-6Al-4V alloy was also improved by plasma electrolytic oxidation treatment. Its wettability and bioactivity were also greatly increased by wollastonite coating. Results of this study indicate that both plasma electrolytic oxidation treatment and wollastonite coating by room temperature spray process could be used to improve surface bioactivity of Ti-6Al-4V alloy substrate.