• Title/Summary/Keyword: commercial detergents

Search Result 29, Processing Time 0.02 seconds

Monitoring of Methanol Levels in Commercial Detergents and Rinse Aids (시판 세척제 및 헹굼보조제 중 메탄올 함량 모니터링)

  • Park, Na-youn;Yang, Heedeuk;Lee, Jeoungsun;Kim, Junghoan;Park, Se-Jong;Choi, Jae Chun;Kim, MeeKyung;Kho, Younglim
    • Journal of Food Hygiene and Safety
    • /
    • v.34 no.3
    • /
    • pp.263-268
    • /
    • 2019
  • Methanol is a toxic alcohol used in various products such as antifreeze, detergent, disinfectant and industrial solvent. In the human body, methanol is oxidized to formaldehyde and formic acid, which can lead to metabolic acidosis, optic nerve impairment, and death. In this study, the methanol levels in detergents (n=191) and rinse aids (n=13) were analyzed by gas chromatography-headspace-mass spectrometry (GC-HS-MS). Limit of detection was 1.09 mg/kg, accuracy and precision were 91.1-97.9% and <10%, and it was suitable for quantitative analysis. This analysis method was simple and fast with a higher recovery rate than the conventional MFDS (Ministry of Food and Drug Safety) method of diluting the sample in water and putting it in a headspace vial.

Characterization of Organic Solvent Stable Lipase from Pseudomonas sp. BCNU 106 (Pseudomonas sp. BCNU 106이 생산하는 유기용매 내성 리파아제의 특성)

  • Choi, Hye Jung;Hwang, Min Jung;Kim, Dong Wan;Joo, Woo Hong
    • Journal of Life Science
    • /
    • v.26 no.5
    • /
    • pp.603-607
    • /
    • 2016
  • A crude extracellular lipase from solvent-tolerant bacterium Pseudomonas sp. BCNU 106 was highly stable in the broad pH range of 4-10 and at temperature of 37℃. Crude lipase of BCNU 106 exhibited enhanced stability in 25% organic solvents such as xylene (121.85%), hexane (120.35%), octane (120.41 %), toluene (118.14%), chloroform (103.66%) and dodecane (102.94%) and showed excellent stability comparable with the commercial immobilized enzyme. In addition, the stability of BCNU 106 lipase retained above 110% of its enzyme activity in the presence of Cu2+, Hg2+, Zn2+ and Mn2+, whereas Fe2+ strongly inhibited its stability. The detergents including tween 80, triton X-100 and SDS were positive signals for lipase stability. Because of its stability in multiple organic solvents, cations and surfactants, the Pseudomonas sp. BCNU 106 lipase could be considered as a potential biocatalyst in the industrial chemical processes without using immobilization.

A Study on the Development of Improved Artificially Soiled Cloth and its Detergency (새로운 인공오염포의 제작과 그 세척성에 관한 연구)

  • Chung Doo Jin;Kim Mi Hyung
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.13 no.3 s.31
    • /
    • pp.207-222
    • /
    • 1989
  • New process for the preparation of the artificially soild cloth (ASC) used for detergency evaluation was developed and its detergency was also studied. ASC was prepared by the dipping of cotton cloth in the water in which oily soil, protein (gelatine), carbon black and clay had been dispersed. The clay used for this ASC was red yellowish soil around Mt. Kumjung and was a typical soil in Pusan area. Adhesive status of soil at prepared ASc was examined by an electron microscope, and crystallyzation and color change of used clay were evaluated with the determination of X-ray diffraction and surface reflectance. For the evaluation of detergency by the washing with commercial and model detergents, the behavior of soil removal from this ASC comparing with naturally soiled collar cloth was examined. Those results are summerized as followings; 1) Adhesive ststus of soil at prepared ASc was very similar to that of naturally soiled collar cloth. 2) A crystalline of clay calcined at $800^{\circ}C$ was disappeared in part and color of calcined clay changed into reddish yellow by the decomposition of organic matters. 3) More uniform ASc was prepared with clay calcined at $800^{\circ}C\;that\;200^{\circ}C$ however its detergency prepared from clay calcined at $800^{\circ}C$ was poor 4) A significant relationship between the content of inorganic matter in ASc and K/S value was found, however no significant result between the content of protein contaminated and K/S value was observed. 5) Detergency of prepared ASc had a very similar to that of naturally soiled collar cloh.

  • PDF

Secretory Expression, Functional Characterization, and Molecular Genetic Analysis of Novel Halo-Solvent-Tolerant Protease from Bacillus gibsonii

  • Deng, Aihua;Zhang, Guoqiang;Shi, Nana;Wu, Jie;Lu, Fuping;Wen, Tingyi
    • Journal of Microbiology and Biotechnology
    • /
    • v.24 no.2
    • /
    • pp.197-208
    • /
    • 2014
  • A novel protease gene from Bacillus gibsonii, aprBG, was cloned, expressed in B. subtilis, and characterized. High-level expression of aprBG was achieved in the recombinant strain when a junction was present between the promoter and the target gene. The purified recombinant enzyme exhibited similar N-terminal sequences and catalytic properties to the native enzyme, including high affinity and hydrolytic efficiency toward various substrates and a superior performance when exposed to various metal ions, surfactants, oxidants, and commercial detergents. AprBG was remarkably stable in 50% organic solvents and retained 100% activity and stability in 0-4 M NaCl, which is better than the characteristics of previously reported proteases. AprBG was most closely related to the high-alkaline proteases of the subtilisin family with a 57-68% identity. The secretion and maturation mechanism of AprBG was dependent on the enzyme activity, as analyzed by site-directed mutagenesis. Thus, when taken together, the results revealed that the halo-solvent-tolerant protease AprBG displays significant activity and stability under various extreme conditions, indicating its potential for use in many biotechnology applications.

A Novel Esterase from Paenibacillus sp. PBS-2 Is a New Member of the ${\beta}$-Lactamase Belonging to the Family VIII Lipases/Esterases

  • Kim, Young-Ok;Park, In-Suk;Nam, Bo-Hye;Kim, Dong-Gyun;Jee, Young-Ju;Lee, Sang-Jun;An, Cheul-Min
    • Journal of Microbiology and Biotechnology
    • /
    • v.24 no.9
    • /
    • pp.1260-1268
    • /
    • 2014
  • Screening of a gene library from Paenibacillus sp. PBS-2 generated in Escherichia coli led to the identification of a clone with lipolytic activity. Sequence analysis showed an open reading frame encoding a polypeptide of 378 amino acid residues with a predicted molecular mass of 42 kDa. The esterase displayed 69% and 42% identity with the putative ${\beta}$-lactamases from Paenibacillus sp. JDR-2 and Clostridium sp. BNL1100, respectively. The esterase contained a Ser-x-x-Lys motif that is conserved among all ${\beta}$-lactamases found to date. The protein PBS-2 was produced in both soluble and insoluble forms when E. coli cells harboring the gene were cultured at $18^{\circ}C$. The enzyme is a serine protein and was active against p-nitrophenyl esters of $C_2$, $C_4$, $C_8$, and $C_{10}$. The optimum pH and temperature for enzyme activity were pH 9.0 and $30^{\circ}C$, respectively. Relative activity of 55% remained at up to $5^{\circ}C$ with an activation energy of 5.84 kcal/mol, which indicates that the enzyme is cold-adapted. Enzyme activity was inhibited by $Cd^{2+}$, $Cu^{2+}$, and $Hg^{2+}$ ions. As expected for a serine esterase, activity was inhibited by phenylmethylsulfonyl fluoride. The enzyme was remarkably active and stable in the presence of commercial detergents and organic solvents. This cold-adapted esterase has potential as a biocatalyst and detergent additive for use at low temperatures.

Characterization of an Antarctic alkaline protease, a cold-active enzyme for laundry detergents (세탁세제 첨가용 효소 개발을 위한 남극 해양세균 유래 저온성 단백질분해효소의 특성 연구)

  • Park, Ha Ju;Han, Se Jong;Yim, Joung Han;Kim, Dockyu
    • Korean Journal of Microbiology
    • /
    • v.54 no.1
    • /
    • pp.60-68
    • /
    • 2018
  • A cold-active and alkaline serine protease (Pro21717) was partially purified from the Antarctic marine bacterium Pseudoalteromonas arctica PAMC 21717. On a zymogram gel containing skim milk, Pro21717 produced two distinct clear-zones of approximately 37 kDa (low intensity) and 74 kDa (high intensity). These were found to have identical N-terminal sequences, suggesting they arose from an identical precursor and that the 37 kDa protease might homodimerize to the more active 74 kDa form of the protein. Pro21717 displayed proteolytic activity at $0-40^{\circ}C$ (optimal temperature of $40^{\circ}C$) and maintained this activity at pH 5.0-10.0 (optimal pH of 9.0). Notably, relative activities of 30% and 45% were observed at $0^{\circ}C$ and $10^{\circ}C$, respectively, in comparison to the 100% activity observed at $40^{\circ}C$, and this enzyme showed a broad substrate range against synthetic peptides with a preference for proline in the cleavage reaction. Pro21717 activity was enhanced by $Cu^{2+}$ and remained stable in the presence of detergent surfactants (linear alkylbenzene sulfonate and sodium dodecyl sulfate) and other chemical components ($Na_2SO_4$ and metal ions, such as $Ba^{2+}$, $Mg^{2+}$, $Ca^{2+}$, $Zn^{2+}$, $Fe^{2+}$, $K^+$, and $Na^{2+}$), which are often included in commercial detergent formulations. These data indicate that the psychrophilic Pro21717 has properties comparable to the well-characterized mesophilic subtilisin Carlsberg, which is commercially produced by Novozymes as the trademark Alcalase. Thus it has the potential to be used as a new additive enzyme in laundry detergents that must work well in cold tap water below $15^{\circ}C$.

Feasibility as a Laundry Detergent Additive of an Alkaline Protease from Bacillus clausii C5 Transformed by Chromosomal Integration (Chromosomal Integration에 의해 제조한 Bacillus clausii C5 유래의 alkaline protease의 세제 첨가제 응용성)

  • Joo, Han-Seung;Choi, Jang Won
    • KSBB Journal
    • /
    • v.27 no.6
    • /
    • pp.352-360
    • /
    • 2012
  • Bacillus clausii I-52 which produced SDS- and $H_2O_2$-tolerant extracellular alkaline protease (BCAP) was isolated from heavily polluted tidal mud flat of West Sea in Incheon, Korea and stable strain (transformant C5) of B. clausii I-52 harboring another copy of BCAP gene in the chromosome was developed using the chromosome integration vector, pHPS9-fuBCAP. When investigated the production of BCAP using B. clausii transformant C5 through pilot-scale submerged fermentation (500 L) at $37^{\circ}C$ for 30 h with an aeration rate of 1 vvm and agitation rate of 250 rpm, protease yield of approximately 105,700 U/mL was achieved using an optimized medium (soybean meal 2%, wheat flour 1%, sodium citrate 0.5%, $K_2HPO_4$ 0.4%, $Na_2HPO_4$ 0.1%, NaCl 0.4%, $MgSO_4{\cdot}7H_2O$ 0.01%, $FeSO_4{\cdot}7H_2O$ 0.05%, liquid maltose 2.5%, $Na_2CO_3$ 0.6%). The enzyme stability of BCAP was increased by addition of polyols (10%, v/v) and also, the stabilities of BCAP towards not only the thermal-induced inactivation at $50^{\circ}C$ but also the SDS and $H_2O_2$-induced inactivation at $50^{\circ}C$ were enhanced. Among the polyols examined, the best result was obtained with propylene glycol (10%, v/v). The BCAP supplemented with propylene glycol exhibited extreme stability against not only the detergent components such as ${\alpha}$-orephin sulfonate (AOS) and zeolite but also the commercial detergent preparations. The granulized enzyme of BCAP was prepared with approximately 1,310,000 U/g of granule. Wash performance analysis using EMPA test fabrics revealed that BCAP granule exhibited high efficiency for removal of protein stains in the presence of anionic surfactants as well as bleaching agents. When compared to Savinase 6T$^{(R)}$ and Everlase 6T$^{(R)}$ manufactured by Novozymes, BCAP under this study probably showed similar or higher efficiency for the removal of protein stains. These results suggest that the alkaline protease produced from B. clausii transformant C5 showing high stability against detergents and high wash performance has significant potential and a promising candidate for use as a detergent additive.

Effects of Endocrine Disrupting Chemicals on the Nervous System (내분비계 교란물질이 신경계에 미치는 영향)

  • Shin, Hyun Seung;Wi, Jae Ho;Lee, Seung Hyun;Choi, Soo Min;Jung, Eui-Man
    • Journal of Life Science
    • /
    • v.32 no.1
    • /
    • pp.70-77
    • /
    • 2022
  • Endocrine disrupting chemicals (EDCs) have been attracting significant attention in modern society, owing to the increased incidence rate of various diseases along with population growth. EDCs are found in many commercial products, including some plastic bottles and containers, detergents, liners of metal food cans, flame retardants, food, toys, cosmetics, and pesticides. EDCs have a hormonal effect on the human body, which disrupts the endocrine system, notably affecting sexual differentiation and normal reproduction, and can trigger cancer as well. Recently, the association between neurological diseases and EDCs has become a hot topic of research in the field of neuroscience. Considering that EDCs negatively affect not only neuronal proliferation and neurotransmission but also the formation of the neuronal networks, EDCs may induce neurodevelopmental disorders, such as autism spectrum disorders and attention-deficit/hyperactivity disorder as well as neurodegenerative diseases, including Parkinson's disease and Alzheimer's disease. In light of these potentially deleterious outcomes, important efforts have been underway to minimize the exposure to EDCs through appropriate regulations and policies around the world, but chemicals that have not yet been associated with endocrine disrupting properties are still in wide use. Therefore, more epidemiological investigations and research are needed to fully understand the effects of EDCs on the nervous system.

Effects of Bisphenol A and BPA Alternatives on the Nervous System (Bisphenol A와 대체물질들이 신경계에 미치는 영향)

  • Ha Jung Moon;Seung Hyun Lee;Hyun Seung Shin;Eui-Man Jung
    • Journal of Life Science
    • /
    • v.33 no.4
    • /
    • pp.371-381
    • /
    • 2023
  • Endocrine disrupting chemicals (EDCs), used in a variety of products in modern society, are hormone-like substances that cause various diseases. Humans are exposed to EDCs through their inclusion in pesticides, plastics, cosmetics, detergents, and drugs. Bisphenol A (BPA), one of the representative endocrine disruptors, is an estrogen-like substance that has been widely used commercially in plastic and epoxy resins. BPA is a chemical that can disrupt the endocrine system, leading to reduced reproductive function, obesity, cancer, and neurodevelopmental disorders. Since the adverse health effects of BPA began to be reported the use of BPA has been regulated worldwide. Various alternatives to BPA have been widely used worldwide; representatively, bisphenol S (BPS) and bisphenol F (BPF) are the most commonly used in commercial contexts. BPS and BPF may cause endocrine-disrupting effects like those of BPA due to their similar chemical structures. Recent studies have reported that BPS and BPF disrupt the neurodevelopmental process and cause neurodevelopmental disorders. Therefore, future studies will be required for safety verification of BPA alternatives and the development of new alternatives to BPA for brain health. In this review, we reviewed the effects of BPA and the alternatives, BPS and BPF, on the nervous system.