• Title/Summary/Keyword: comer fire

Search Result 11, Processing Time 0.019 seconds

A Numerical Study of a Room Fire for Fire Sizes II. wall fire and corner fire (FDS를 이용한 실내화재 모사의 문제점 II. 벽면형 및 모서리형 화재)

  • Ko Kyung-Chan;Park Woe-Chul
    • Journal of the Korean Society of Safety
    • /
    • v.19 no.3 s.67
    • /
    • pp.9-13
    • /
    • 2004
  • To confirm the previous finding that FDS predicts a fire growth rate too rapid compared with an experiment in a center fire in a room with an opening, the same computational fluid dynamics was applied to two types of fires, wall fire and comer fire. First the grid size was chosen to eliminate possible numerical errors due to a coarse grid system. Then the two types of fires were simulated for three different fire sizes, 7.65, 21.25, and 51.57kW for each type, which are the same as in the experiment to be compared with. The fires were predicted to grow too fist although the average temperatures and heights of the neutral planes were in good agreement with measurement.

A Study on Fire Characteristics in a Tall and Narrow Atrium

  • Sugawa, Osami;Takahashi, Wataru;Ohtake, Masanori;Satoh, Hiroomi
    • Proceedings of the Korea Institute of Fire Science and Engineering Conference
    • /
    • 1997.11a
    • /
    • pp.353-360
    • /
    • 1997
  • The modeling on fire safety assessment for a tall and narrow atrium is carried out using a reduced and full scale atrium models based on the performances of flow behavior in and near comer fire and smoke ventilation system. The comer (or wall) effects on the flame behavior considering air entrainment into a flame was evaluated theoretically and experimentally. Temperature, upward velocity, inlet air velocity, and pressure difference between the atrium space and atmosphere were measured systematically in a reduced scale model. The performance of the modeling to estimate temperature rise and natural air ventilation volume was verified based on the experimental results. Smoke filling rate from a model fire source set at the center of a tall and narrow atrium is fastest in the other cases in which fire source set in or near a corner. This suggested that the centering of the fire source is acceptable as the fire source position to assess the fire safety design for a tall and narrow atrium.

  • PDF

APPLICATIONS OF A MODEL TO COMPARE AFLAME SPREAD AND BEAT RELEASE PROPERTIES OF INFERIOR FINISH MATERIALS IN A COMPARTMENT

  • Kim, Woon-Hyung;James G. Quintiere
    • Proceedings of the Korea Institute of Fire Science and Engineering Conference
    • /
    • 1997.11a
    • /
    • pp.193-200
    • /
    • 1997
  • Flame spread and heat release properties and incident heat flux of interior materials subject to an igniter heat flux in a compartment are investigated and compared by using computer model. A comer fire ignition source is maintained for 10 minutes at 100 kw and subsequently increased to 300kw. In executing the model, base-line material properties are selected and one is changed for each run. Also 4 different igniter heat flux conditions and examined. Results are compared for the 12 different materials tested by the ISO Room Comer Test (9705). The time for total energy release rate to reach 1MW is examined. The parameters considered include flame heat flux and thermal inertia, lateral flame spread parameter, heat of combustion and effective heat of gasfication. The model can show the importance of each property in causing fire growth on interior Hnish materials in a compartment. The effect of ignitor heat flux and material property effects were demonstrated by using dimensionless parameters a, b and Tb. Results show that for b greater than about zero, flashover time in the ISO Room-Corner test is principally proportional to ignition time and nothing more.

  • PDF

A Study on the Flame Behavior of Whirl Eire and Pool Fire (Whirl Fire와 Pool fire의 화염 거동에 관한 연구)

  • Oh Kyu-Hyung;Kang Youn-Ok;Lee Sung-Eun
    • Journal of the Korean Society of Safety
    • /
    • v.19 no.3 s.67
    • /
    • pp.45-50
    • /
    • 2004
  • 4-panel of 1m height and 45cm width were fixed on the $40cm{\times}40cm$ bottom plate and the opening of the panel comer was 5cm. Diameter of stainless vessel is loom and its height is 2cm and it located at the center of the bottom plate. 78mL liquid fuel was filled in the vessel and its depth was 1cm. Flame temperature was measured with K type thermocouple, and radiation heat of flame was measured with heat flux meter. Flame height and its behavior was visualized with video camera. and mass burning rate was measured by fuel combustion time. According to the development of fire, flame swirling was begin. From the experiment the mass burning rate was larger and the height of flame was higher than the usual pool fire flame. Flame temperature and heat flux also increased far more than the pool fire. Consequently the swirling air flow through the openings between the panel and thermal buoyance contribute to increase of heat release rate, flame length and mass burning rate.

An Experimental Study of Smoke Movement of the Various Fire Location in Room (실내공간에서 화재 발생위치에 따른 연기거동에 대한 실험연구)

  • Yu, Hong-Seon;Jeong, Jin-Yong;Lee, Jae-Ha;Hong, Gi-Bae
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.26 no.5
    • /
    • pp.703-709
    • /
    • 2002
  • In order to investigate the smoke movement in three dimensional room fires, the center fire, wall fire and corner fire plume in different sized fires were studied experimentally by rectangular pool fire using methanol as a fuel. As the fire size became larger for the center fires placed at the center of the floor, the air flow rate entrained through the opening, average hot layer temperature, flame angle deflected backwards and mean flame height was observed to increase. On the other hand, as the fire size became smaller, the neutral plane height in the door and time reached steady-state was observed to decrease. The average hot layer temperature, mean flame height and doorway neutral plane height obtained from comer fire were higher than those produced by wall fires and center fires. The simple model for describing the effect of walls on the mean flame height was presented. It was shown that the model provides a good description of the present measurements, when used with the assumption by Hansell(1993), that the increase of the average flame height is equal to the ratio of the open to the total perimeters of the trays. Also the two models for predicting the effects of walls on the mean flame height were presented. These models overestimated the measured values of the mean flame height above fuel trays close to a wall and in a corner by approximately 19-26%, respectively.

ISO 9705 Room-Corner Test & Model simulations (ISO 9705 Room-Corner Test와 모델 평가)

  • ;S.E. Dillom;J,G Quintiere
    • Fire Science and Engineering
    • /
    • v.13 no.2
    • /
    • pp.3-11
    • /
    • 1999
  • New examination of a predictive model for the ISO 9705 room-corner test have been m made for materials studied by L S Fire Laboratories, Italy. The ISO 9705 test subjects wall a and ceiling mounted materials to a comer ignition source of 100 kW for a duration of 10 m minutes; if flashover does not occur this is followed by 300 kW for another 10 minutes. The m materials that did not stay in place during combustion because of melting, dripping, or d distorting were simulated by an adjustment to the material's total available energy. For m mat려als that remain in place the simulation model appears to do well in its prl어ictions. A l large-s떠Ie room test results 뾰 compar벼 with the m여el’s prediction also.

  • PDF

The Characteristics of $CO_2 $ Extinguishant Transfer According to the Nozzle Conditions of a Fixed Eire System (고정식 소화장치 노즐조건에 따른 $CO_2 $전달특성)

  • 박찬수;최주석;전철균
    • Fire Science and Engineering
    • /
    • v.18 no.2
    • /
    • pp.41-48
    • /
    • 2004
  • We have conducted a numerical simulation under three-dimensional unsteady conditions in order to analyze the characteristics of $CO_2 $;, extinguishant transfer by varying the location of the injection nozzle, which affects the effect of a $CO_2 $;, fire fighting system used in the form of fixed systems for the marine engine room. Flow fields and $CO_2 $;, concentration fields were measured according to the location of the injection nozzle. In the case of arranging the injection nozzle on the center of the ceiling, the low-normal concentration distribution was developed along the $CO_2 $;, jet due to the downward flow created by impinging ceiling jets in the symmetric plane. The concentration line reaches its peak due to the mass transfer of $CO_2 $;, at the comer.

Smoke Movement Characteristics in the Ship's Indoor Spaces with Fire Size and Location (선박 실내공간에서 화재의 크기 및 위치에 따른 연기거동특성)

  • Han, Won-Hui;Cho, Dae-Hwan
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.11 no.1 s.22
    • /
    • pp.53-59
    • /
    • 2005
  • It is very dongerous for ship‘s fire which occurs from navigating because of it will not be able to expect fire fighting from land so that handle with the oneself to control. Additionally, in the case of passenger ship is more serious for the reason of not only the property damage but also large life accident can be occurred continuously. When the fire occurs, the many smoke to occur simultaneously as well as the heat from combustion process and the poisonous smoke is brought the life damage as the death from suffocation The purpose of this study is to examine the smoke movement characteristics in the ship's indoor spaces with fire size and location An experimental study was carried out with two sized of fires and three typed of fire source locations. As the results, the smoke and heat diffusion characteristics Ms been showed the most quick rise curve in the case of comer type fire.

  • PDF

Smoke Movement Characteristics in the Ship's Indoor Spaces with Fire Size and Location (선박 실내공간에서 화재의 크기 및 위치에 따른 연기거동특성)

  • Han Won-Hui;Cho Dae-Hwan
    • Proceedings of KOSOMES biannual meeting
    • /
    • 2005.05a
    • /
    • pp.167-173
    • /
    • 2005
  • It is very dangerous for ship‘s fire which occurs from navigating because of it will not be able to expect fire fighting from land so that handle with the oneself to control. Additionally, in the case of passenger ship is more serious for the reason of not only the properly damage but also large life accident can be occurred continuously. When the fire occurs, the many smoke to occur simultaneously as well as the heat from combustion process and the poisonous smoke is brought the life damage as the death from suffocation. The purpose of this study is to examine the smoke movement characteristics in the ship's indoor spaces with fire size and location An experimental study was carried out with two sized of fires and three typed of fire source locations. As the result of it, the smoke and heat diffusion characteristics has been showed the most quick rise curve in the case of comer type fire.

  • PDF

A Study on Development of Database for the Characteristics of Hazardous Chemicals (유해화학물질 특성정보 데이터베이스 구축 연구)

  • Han, Jong-Yup;Song, Ki-Sup;Kang, Sung-Hyun
    • Journal of Information Management
    • /
    • v.28 no.2
    • /
    • pp.1-19
    • /
    • 1997
  • A late-comer in the marine affairs, development of ways for efficient access and utilization of information on marine environmental conservation and pollution prevention is important. The properties and removal methods of toxic chemicals have been entered into the database for 1,000 substances. The database of toxic chemicals for pollution and spills has also been fortified for the following terms: general characteristics, health hazard and response, fire hazard and response, chemical reactivity, physico-chemical properties, and other properties. The information and data running in this database are easily accessible via Internet and Korean telecommunications companies; it is also available KRISTAL databases.

  • PDF