• 제목/요약/키워드: combustion reaction mechanism

검색결과 142건 처리시간 0.026초

Generation of a skeletal mechanism of coal combustion based on the chemical pathway analysis

  • Ahn, Seongyool;Watanabe, Hiroaki;Shoji, Tetsuya;Umemoto, Satoshi;Tnno, Kenji
    • 한국연소학회:학술대회논문집
    • /
    • 한국연소학회 2014년도 제49회 KOSCO SYMPOSIUM 초록집
    • /
    • pp.5-7
    • /
    • 2014
  • A skeletal mechanism of coal combustion was derived from a detailed coal combustion kinetic mechanism through an importance analysis of chemical pathways. The reduction process consists of roughly two parts. The first process is performed based on a connectivity analysis between species. In this process, DRGEPSA is chosen for reduction process. Strongly connected species and related reactions from the important species set as start species by the operator are sorted into the reduced mechanism. About 70% of species and reactions can be removed with a limited accuracy loss. Subsequently the second reduction process, CSP, is performed. This method focuses on an importance of each reaction and can reduce a volume of mechanism appropriately. Through these analyses, a skeletal mechanism is generated that is including 65 species and 150 reactions. The generated skeletal mechanism is verified through a comparison with the detailed mechanism in the homogeneous reactor model of CHEMKIN-PRO under wide range of conditions. The generated mechanism can give an advantage in the analysis of coal combustion characteristics in detail in large scale simulations such as LES and DNS.

  • PDF

자체반응열 고온합성법에 의한 탄화티타늄 합성에 관한 메카니즘 (Mechanism on the Synthesis of Titanium Carbide by SHS (Self-Propagating High-Temperature Synthesis) Method)

  • 하호;황규민;한희동
    • 한국세라믹학회지
    • /
    • 제31권11호
    • /
    • pp.1249-1258
    • /
    • 1994
  • Titanium carbide was synthesized by reacting the prepared titanium powder and carbon black using SHS method sustains the reaction spontaneously, utilizing heat generated by the exothermic reaction itself. In this process, the effect of the particle size of titanium powder on combustion temperature and combustion wave velocity was investigated. By controlling combustion temperature and combustion wave velocity via mixing Ti and C powder with TiC, the reaction kinetics of TiC formation by SHS method was considered. Without reference to the change of combustion temperature and combustion wave velocity, TiC was easily synthesized by combustion reaction. As the particle size of titanium powder was bigger, or, as the amount of added diluent(TiC) increased, combustion temperature and combustion wave velocity were found to be decreased. The formation of TiC by combustion reaction in the Ti-C system seems to occur via two different mechanisms. At the beginning of the reaction, when the combustion temperatures were higher than 2551 K, the reaction was considered to be controlled by the rate of dissolution of carbon into a titanium melt with an apparent activation energy of 148 kJ/mol. For combustion temperatures less than 2551 K, it was considered to be controlled by the atomic diffusion rate of carbon through a TiC layer with an apparent activation energy of 355 kJ/mol. The average particle size of the synthesized titanium carbide was smaller than that of the starting material(Ti).

  • PDF

Dimethyl Ether-Air 예혼합화염의 축소 반응 메카니즘 개발 (The Development of the Short Mechanism for Premixed Dimethyl Ether-Air Flames)

  • 이기용;이수각
    • 한국연소학회:학술대회논문집
    • /
    • 한국연소학회 2012년도 제45회 KOSCO SYMPOSIUM 초록집
    • /
    • pp.211-214
    • /
    • 2012
  • A short reaction mechanism was developed in order to predict the flame phenomena in premixed Dimethyl Ether-Air flame with the methods of SEM-CM(Simulation Error Minimization Connectivity Method), sensitivity analysis, and the rate of production analysis. It consisted of 31 species including nitrogen as inert gas and 177 elementary reactions. The flame structures obtained using a detailed reaction mechanism and the short reaction mechanism were compared with various equivalence ratios and pressure, and the results were in good agreement. Therefore, the short reaction mechanism would be used to aim at studying the development of a reduced reaction mechanism.

  • PDF

정적 연소실내에서 화염 전파 과정에 대한 실험적 연구 (The Experimental study on the Flame Propagation Process of a Constant Volume Combustion Chamber)

  • 김춘중;강경구
    • 한국산업융합학회 논문집
    • /
    • 제2권1호
    • /
    • pp.121-130
    • /
    • 1999
  • It is necessary to measure pressure, temperature, chemical equilibrium and the shape of flame in order to understand the combustion process in a combustion chamber. In particular, the flame formulation and combustion process of divided combustion chamber are different from those of a single chamber, And the variable diameter of a jet hole can effect not only physical properties like ejection velocity, temperature and time of combustion but also a chemical property like the reaction mechanism. Accordingly temperature is one of the most important factors which influence the combustion mechanism. This paper observed shape of flame by using the schlieren photographs and measured the pressure in a combustion chamber and the reaching time of the flame by ion probe By doing these, we investigation the formulation of the flame and the process of propagation. These measurement methods can be advanced in understanding the combustion process and process and propagation of flame.

  • PDF

Methyl Butanoate의 상세 화학 반응 메커니즘 자동 축소화를 통한 기초 반응 메커니즘의 생성 및 검증 (Chemical Mechanism Reduction and Validation of Methyl Butanoate by Automatic Reduction Procedure)

  • 이영재;허강열
    • 한국연소학회지
    • /
    • 제21권3호
    • /
    • pp.16-23
    • /
    • 2016
  • In this study, skeletal mechanisms are produced by directed relation graph with specified threshold value and sensitivity analysis based on species database from the directed relation graph. Skeletal mechanism is optimized through the elimination of unimportant reaction steps by computational singular perturbation importance index. Reduction is performed for the detailed mechanism of methyl butanoate consisting of 264 species and 1219 elementary reactions. Validation shows acceptable agreement for auto-ignition delays in wide parametric ranges of pressure, temperature and equivalence ratio. Methyl butanoate has been proposed as a simple biodiesel surrogate although the alkyl chain consists of four carbon atoms. The resulting surrogate mechanism for n-heptane and MB consists of 76 species and 226 reaction steps including those for NOx.

메탄 화염에서 염화 탄화수소 화합물이 질소산화물 생성에 미치는 영향 조사 (The Investigation of Influence of Chlorinated Hydrocarbons on $NO_x$ Formation from Methane Flames)

  • 장경;장봉춘;이기용
    • 한국연소학회지
    • /
    • 제13권1호
    • /
    • pp.10-16
    • /
    • 2008
  • Numerical simulations of freely propagating premixed flames burning mixtures of methane and chlorinated hydrocarbons in fuel are performed at atmospheric pressure in order to understand the effect of chlorinated hydrocarbons on the formation of nitrogen oxide. A detailed chemical reaction mechanism is used, the adopted scheme involving 89 gas-phase species and 1017 elementary forward reaction steps. Chlorine atoms available from chlorinated hydrocarbons inhibit the formation of nitrogen oxides by lowering the concentration of radical species. The reduction of NO emission index calculated with thermal or prompt NO mechanism is not linear and is probably related to the saturation effect as $CH_3Cl$ addition is increased, In the formation or consumption of nitrogen oxide, the $NO_2$ and NOCl reactions play an important role in lean flames while the HNO reactions do in rich flames. The molar ratio of Cl to H in fuel has an effect on the magnitude of NO emission index.

  • PDF

$W/KClO_4/BaCrO_4$ 지연제의 연소 메카니즘 (The Combustion Mechanism of Tungsten-potassium Perchlorate-barium Chromate Delay power)

  • Nakamura, Hidesugu;Akiyoshi, Miyako;Hara, Yasutake
    • 화약ㆍ발파
    • /
    • 제18권1호
    • /
    • pp.53-58
    • /
    • 2000
  • Thermal analysis, analysis of combustion residue and combustion characteristics measure ment such as burning rate or temperature were carried out to clarify the combustion mechanism of a tungsten- potassium perchlorate-barium chromate chromate delay powder. The results obtained are as follows. The main reaction of the delay powder of tungsten-potassium perchlorate-barium chromate is the oxidation of tungsten by potassium perchlorate. Barium chromate acts as a burning rate modifier, and the smaller the larger is the burning rate. Three types of delay composition used in this study show characteristic burning behavior. A stoichiomertric or a oxidizer-rich composition has a small linear burning rate. although it is has a large heat of combustion. On the other hand, a tungsten-excess or a fuel-rich composition with a small heat of combustion has a larger linear burning rate than the former, showing a small fractional oxidation of tungeten (below 10%) contained in the delay powder. From these results, a surface combustion mechanism is proposed for the combustion mechanism of this delay powder.

  • PDF

Diesel Surrogate 상세 반응 기구를 이용한 HCCI 엔진의 연소 특성에 관한 수치해석 연구 (A Numerical Study of Combustion Characteristics for HCCI Engine with Detailed Diesel Surrogate Chemical Mechanism)

  • 이원준;이승로;이창언
    • 한국연소학회지
    • /
    • 제16권2호
    • /
    • pp.9-15
    • /
    • 2011
  • Homogeneous charge compression ignition(HCCI) is the best concept able to provide low NOx and PM in diesel engine emissions. This new alternative combustion process is mainly controlled by chemical kinetics in comparison with the conventional combustion in internal combustion engine. In this paper, combustion characteristics of HCCI engine with suggested diesel surrogate(heptane/toluene mixture fuel) reaction mechanism were numerically investigated by heptane/toluene mixture ratio and EGR ratio. As results, the ignition timing became faster with increasing of heptane, and an initial oxidation and the ignition timing of the mixture fuel were affected by heptane and toluene, respectively.

산소부화조건에서의 반응기구 검토 (Examination of Optimal Reaction Mechanism in Oxygen Enriched Condition)

  • 한지웅;이창언
    • 한국연소학회:학술대회논문집
    • /
    • 한국연소학회 제26회 KOSCO SYMPOSIUM 논문집
    • /
    • pp.247-253
    • /
    • 2003
  • Burning velocities of conventional methane flame and oxygen-enriched methane flame were determined by experimentally and numerically at atmospheric pressure in order to examine the validity of various detailed reaction mechanisms in oxygen-enriched flame. The schlieren system was adopted to obtain the burning velocity of flame stabilized on a circular nozzle. Premix code was employed to compute the burning velocity. Three reaction mechnisms were tested at several oxygen enrichment level, whose names are GRI 3.0, MB(Miller and Bowman) and LKY(Lee Ki Yong) reaction mechanism. Sensitivity analysis was also performed to discriminate dominantly affecting reaction on burning velociy. The results showed that conventional reaction mechanisms originally based on methane-air flame were underpredict the burning velocity at high oxygen-enrichment level. The modified GRI 3.0 reaction mechanism based on our experimental results was suggested and shows a good agreement in estimating the burning velocity and the NO number density of oxygen-enriched flame.

  • PDF

가스 연료의 연소 방식에 따른 NOx 생성 특성 (NOx Formation Characteristics in Diffusion, Partial Premixed and Premixed Jet flame)

  • 최영호;이창언
    • 한국연소학회:학술대회논문집
    • /
    • 한국연소학회 1998년도 제17회 KOSCI SYMPOSIUM 논문집
    • /
    • pp.155-164
    • /
    • 1998
  • Numerical analysis was performed with multicomponent transport properties and detailed reaction mechanisms for axisymetric 2-D CH4 jet diffusion, partial premixed, premixed flame. Calculations were carried out twice with C2-Full Mechanism including prompt NO reaction in addition to the above C2-Thermal NO Mechanism. The role of thermal NO mechanism and prompt NO mechanism on each flame's NO production is investigated by using the numerical result. The NOx production of each flame were evaluated Quantitatively in terms of the NOx emission index

  • PDF