• Title/Summary/Keyword: combustion ratio

Search Result 1,727, Processing Time 0.022 seconds

Combustion Characteristics of Biodiesel Fuel (바이오 디젤 연료의 연소특성)

  • Yoon, Seung-Hyun;Park, Sung-Wook;Kwon, Sang-Il;Lee, Chang-Sik
    • 한국연소학회:학술대회논문집
    • /
    • 2004.11a
    • /
    • pp.146-151
    • /
    • 2004
  • The characteristics of combustion and emission of biodiesel fuel were investigated in a single cylinder DI diesel engine equipped with a common rail injection system. For investigating the effect of bio diesels, the experiments were conducted at various mixing ratio and engine operation conditions. Experimental results show that combustion pressure increased with the increase of mixing ratio and injection pressure. The HC and CO emissions are decreased and NOx emission is increased as the mixing ratio of biodiesels increases at 100MPa injection pressure. However the results of the emissions are shown the contrary to the results at 50MPa of injection pressure due to larger droplets of biodiesel sprays.

  • PDF

Effects of Secondary Air Injection in Combustion Field of Model Gas Turbine Combustor (모형 가스터빈 연소기에서 2차공기 주입이 연소장에 미치는 영향)

  • 김규성;임경달;이동형
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2000.04a
    • /
    • pp.171-176
    • /
    • 2000
  • This purpose of this study is to investigate the combustion emission characteristics on the effect of secondary air injection in combustion field of model gas turbine combustor changing excess air ratio. For this purpose, meantemperature, CO, CO2, O2 and HC concentration were measured by changing excess air ratio and secondary air injection. As a result of this study, meantemperature, CO2 emission was decreased and CO emission increased by increasing the excess air ratio of secondary air. therefore, This paper showed the effect of Secondary air injection on flame structure, combustion emission characteristics.

  • PDF

A Study on Combustion & Flue Gas Characteristics of Coal at Pressurized Fluidized Bed Combustor (가압유동층연소로에서 석탄의 연소 및 배가스특성 연구)

  • Han, Keun-Hee;Oh, Dong-Jin;Ryu, Jung-In;Jin, Gyoung-Tae
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.24 no.5
    • /
    • pp.677-686
    • /
    • 2000
  • The characteristics of combustion and of emissions in pressurized fluidized bed combustor are investigated. The pressure of the combustor is fixed at 6 atm, and the combustion temperatures are set to 850, 900, and $950^{\circ}C$. The gas velocities are 0.9, 1.1, and 1.3 m/s. The excess air ratio is varied from 5 to 35%. The coal used in the experiment is Shenhwa coal in China. All experiments are executed at 2m bed height. Consequently, NOx & $N_2O$ concentration in the flue gas is increased with incresing excess air ratio but $SO_2$ concentration is decreased with incresing excess air ratio. CO concentration is maintained below 100ppm at over 15% of excess air ratio.

Analysis of Combustion Characteristics for a Homogeneous Charge Compression Ignition Engine with Load Condition (예혼합 압축착화 디젤엔진의 부하변동에 따른 연소특성 분석)

  • 장시웅;이기형;이창식
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.10 no.1
    • /
    • pp.17-23
    • /
    • 2002
  • In order to reduce exhaust emissions from diesel engine under wide operating range, an experimental study based on a new concept of combustion called HCDC(Homogeneous Charge Diesel Combustion) was conducted. In this concept, most of the fuel is supplied as premixed homogeneous charge and the rest is directly injected into a cylinder to ignite. In this study we compared combustion characteristics of an HCDC engine with those of conventional diesel engines. At high premixed fuel ratio and high load range, it was observed that premixed combustion heat release rate was low and diffusion combustion duration was shorten. from this experiment, it was found that NOx is reduced by the lower maximum temperature and soot is reduced by rapid combustion during diffusion combustion phase.

Combustion Characteristics in a Constant Volume Combustion Chamber with Sub-chamber(I) -Effect of Geometric Configurations of Passagehole on Combustion- (부실식 정적연소실내 연소특성에 관한 연구(I) -연락공의 기하학적 형상이 연소에 미 치는 영향-)

  • 김봉석;권철홍;류정인
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.1 no.1
    • /
    • pp.66-79
    • /
    • 1993
  • To construct the design back data for a lean-burn gas engine, we have designed a constant volume combustion chamber with sub-chamber. With constant volume ratio of main-sub combustion chamber and constant equivalence ratio of methane-air mixture, the influence of geometric configurations(diameter, injection angle, number, length) of passagehole upon combustion characteristics were studied. It was found that combustion characteristics in the main combustion chamber were greatly influenced by the injection angle and length of passagehole.

  • PDF

Combustion Characteristics Analysis of Methane-Air Homogeneous Mixture in a Constant Volume Combustion Chamber (정적연소기에서의 메탄-공기 균질혼합기의 연소특성 분석)

  • Lee, Suk-Young;Kim, Sang-Jin;Jeon, Chung-Hwan
    • Journal of the Korean Society of Combustion
    • /
    • v.13 no.3
    • /
    • pp.9-16
    • /
    • 2008
  • In this study, a cylindrical constant volume combustion chamber is used to investigate the flow and combustion characteristics of methane-air homogeneous mixture under various initial charge pressure, excess air ratios and ignition times. The flame and burning speed, mean gas speed are calculated by numerical analysis to analyze the combustion characteristics. It is found that the mean gas velocity during combustion has the maximum value around 300 ms and then decreased gradually on the condition of 10000 ms, and that the combustion duration is shorten and flame speed and burning velocity have the highest value under the conditions of an excess air ratio 1.1, an initial charge pressure of 0.2 MPa and an ignition time of 300 ms in the present study. And, the initial pressure and burning speed are in inverse proportion, so that it is in agreement with Strehlow who presented that the initial pressure and burning speed are in inverse proportion when the burning speed is under 50cm/s.

  • PDF

Combustion Characteristics of Stratified Mixture in a Constant Volume Combustion Chamber with Sub-chamber( I ) (부실식 정적연소실내 층상혼합기의 연소특성( I ))

  • Kim, B.S.;Kwon, C.H.;Ryu, J.I.;Ryu, J.I.
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.3 no.1
    • /
    • pp.65-75
    • /
    • 1995
  • The present study was investigated combustion characteristics of methane-air mixtures at stratified charge in a constant volume combustion chamber. The results indicated that even the vety lean mixture, which is normally not flammable in single chamber type, could be burned within. a comparatively short time by using sub-chamber with stratified charge method. And the lean inflammability limit of mixture in a main chamber was about ($\phi_m$cr=O.46, when the equivalence ratio of a sub-chamber was $\phi_s$= 1.0. Initial time of pressure increase and total burning times were decreased and maximum combustion pressure. was increased as the equivalence ratio of both sub and main chamber approached unity. Specifically, initial time of pressure increase and total burning times were greatly affected rather by. the equivalence ratio of sub-chamber than that of main chamber. The maximum combustion pressure was little affected if the total equivalence ratio lies in the same range.

  • PDF

A Study on the Characteristics of Methane-Air Premixture Combustion and Combustion Radicals (1) (밀폐 연소실내의 메탄-공기 예혼합기의 연소 및 라디칼 특성에 관한 연구 (1))

  • Jeon, Chung-Hwan;Jang, Yeong-Jun
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.20 no.2
    • /
    • pp.659-669
    • /
    • 1996
  • To clarify the effects of equivalence ratio, initial pressure and temperature on the flame propagation and radicals characteristics, a series of the experimental study were conducted in a quiescent methane-air premixture using a constant volume chamber. The development of the flame was visualized following the start of ignition using high speed schlieren photo and radical images by intensified CCD camera. Combustion pressure and ion current were recorded simultaneously according to the experimental conditions which were equivalence ratio with 0.7 to 1.2, initial pressure with 0.08 MPa to 0.40 MPa and initial premixture temperature with 3l3.2K to 403.2K. The results showed that the flame speed by ion current and mass fraction burned by combustion pressure characterized the effects of flame propagation very well. And increased combustion duration due to lean combustion condition that was below equivalence ratio, 0.8 caused cycle variation and decreasing the power of engine.

Experimental Study on Supersonic Combustion Phenomena in the Cavity Duct by the Supersonic Inflow Conditions (초음속 유입 유동 조건에 따른 공동을 포함한 덕트 내 초음속 연소 현상에 관한 실험적 연구)

  • Jeong, Eun-Ju;Jeung, In-Seuck;O'Byrne, Sean;Houwing, A.F.P.
    • 한국연소학회:학술대회논문집
    • /
    • 2006.10a
    • /
    • pp.209-219
    • /
    • 2006
  • The supersonic combustion experiments are carried out using T3 free-piston shock tunnel. Different shock tube fill pressures have various inflow conditions. $15^{\circ}$ inclined hydrogen fuel injection is located before the cavity. Oblique shock is generated at the trailing edge of the cavity and reflects off the top and bottom wall. For non-reacting flow, static pressures in low equivalence ratio are similar to those in no fuel injection. As equivalence ratio is increased, static pressures are increased in the duct. In the similar equivalence ratio, static pressures are increased when total enthalpy is decreased. For reacting flow, the flame is occurred near the cavity. The combustion is weak locally in the middle of the duct. The up and down pressure distribution in the duct means that the supersonic combustion is generated.

  • PDF

Effects of Hydrogen Ratio on Combustion and Emissions Characteristics of Hydrogen/Diesel Dual-Fuel Engine (수소의 혼합 비율에 따른 수소/디젤 혼소 엔진의 연소 및 배기 특성 파악)

  • Park, Hyunwook;Bae, Choongsik
    • 한국연소학회:학술대회논문집
    • /
    • 2014.11a
    • /
    • pp.103-106
    • /
    • 2014
  • The effects of hydrogen ($H_2$) ratio on combustion and emission characteristics in a $H_2/diesel$ dual-fuel engine were investigated. Dual-fuel strategy was applied to improve the control of combustion phasing. The combustion phasing was retarded with increasing $H_2$ fraction. This can be explained by both reduced diesel concentration and chemical effect of $H_2$, which reduce the heat release rate during the low temperature reaction stage. Hydrocarbon and carbon monoxide emissions of the engine were decreased drastically when $H_2$ ratio was increased.

  • PDF