• Title/Summary/Keyword: combustion flue gas

Search Result 236, Processing Time 0.023 seconds

Desulfurization Characteristics of Domestic Anthracite by Limes at Bench Scale Pressurized Fluidized Bed Combustor . (벤치규모 가압유동층연소로에서 석회석에 의한 국내무연탄의 탈황특성)

  • Han, Geun-Hui;Ryu, Jeong-In;Jin, Gyeong-Tae
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.25 no.10
    • /
    • pp.1373-1383
    • /
    • 2001
  • The desulfurization characteristics of anthracite in a bench scale pressurized fluidized bed combustor are investigated. The coal used in the experiment is domestic anthracite from Kangwon Taeback area. The desulphurization experiment is performed with limestone from Chungbuk Danyang. The pressure of the combustor is maintained at 6 atm, and the combustion temperatures are 850, 900, and 950$\^{C}$. The superficial gas velocities are 0.9, 1.1, and 1.3 m/s. The excess air ratio is varied from 5 to 35%. The Ca/S mole ratios are 0.5, 1.5, 2.5 and 4.5 mole. All experiments are executed at 2m bed height. Consequently, SO$_2$ concentration in the flue gas is increased with incresing bed temperature and superficial gas velocity. However SO$_2$ concentration is decreased with incresing excess air ratio and Ca/S mole ratio.

A Study on Emission Characteristics of Mercury from Coal Combustion at a Lab-scale Furnace (실험용 연소로에서 석탄 연소 시 발생하는 수은 배출특성 연구)

  • Park, Kyu-Shik;Lee, Ju-Hyoung;Kim, Jeong-Hun;Lee, Sang-Hyeob;Seo, Yong-Chil
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.24 no.2
    • /
    • pp.238-248
    • /
    • 2008
  • This study investigated mercury emission at various combustion conditions and analyzed mercury species in flue gas from coal combustion at a laboratory scale furnace in coal. The results of this study can be used to predict and to assess mercury emission at coal boilers and power plants. The coal used in the plants generally contains about $0.02{\sim}0.28\;mg$ of mercury per kg. Bituminous and anthracite coal used for the experiment contained 0.049 and 0.297 mg/kg of mercury, respectively. Mercury emissions during coal combustion at temperatures range of $600^{\circ}C$ to $1,400^{\circ}C$ was measured and analysed using Ontario Hydro method; the speciation changes were also observed in mercury emissions. The results showed higher fraction of elemental mercury than that of oxidised mercury at most temperatures tested in this experiment. The fraction of elemental mercury was lower in combustion of anthracite coal than in bituminous combustion. As expected, equilibrium calculations and real power plants data showed good similarity. The distribution of particle size in flue gas had the higher peak in size above $2.5\;{\mu}m$. However the peak of mercury enrichment in dust was at $0.3\;{\mu}m$, which could be easily emitted into atmosphere without filtration in combustion system. When the CEA(Chemical equilibrium and Application) code was used for combustion equilibrium calculation, Cl was found to be the important component effecting mercury oxidation, especially at the lower temperatures under $900^{\circ}C$.

Effect of Limestone Characteristics on In-Furnace Desulfurization under Hot Gas Combustion (석회석 분말을 이용한 노내 고온 건식 탈황 특성 연구)

  • Kim, Sang-in;Lee, Byung-hwa;An, Ke-ju;Hwang, Min-young;Kim, Seung-mo;Jeon, Chung-hwan
    • 한국연소학회:학술대회논문집
    • /
    • 2012.11a
    • /
    • pp.43-45
    • /
    • 2012
  • The effect of limestone characteristics on in-furnace desulfurization was experimentally investigated at hot gas combustion condition in a drop tube furnace (DTF). Flue gas was measured by Gas analyzer in order to figure out $SO_2$ content. The experiments were performed under excess sulfur 3000ppm condition to examine the effect of operating variables such as reaction temperatures, Ca/S ratios on the $SO_2$ removal efficiencies. The results show that the $SO_2$ removal efficiency increased with reaction temperature and Ca/S ratio increase. When considering the economics, $1200^{\circ}C$ and Ca/S ratio 2 condition is optimized to reduce $SO_2$ emission.

  • PDF

Study on the In-Furnace Desulfurization for Oxy-Fuel Combustion Flue Gases Using Drop Tube Furnace (Drop Tube Furnace를 이용한 순산소연소 배가스 로내탈황에 관한 연구)

  • An, Young-Mo;Jo, Hang-Dae;Choi, Won-kil;Park, Yeong-Sung;Keel, Sang-In;Lee, Hyung-Keun
    • Korean Chemical Engineering Research
    • /
    • v.47 no.4
    • /
    • pp.512-517
    • /
    • 2009
  • $SO_2$ concentrations in oxy-fuel combustion flue gases increases about three times as high as that of conventional air combustion system owing to the flue gas recirculation for the control of combustion temperature. So the desulfurization reaction is different from that of the conventional air combustion system due to exceptionally high $CO_2$ and $SO_2$ concentration. In this study, drop tube furnace(DTF) system was used to investigate the desulfurization characteristics of limestone in oxy-fuel combustion furnace. The experiments were performed under $O_2/CO_2$ atmosphere to examine the effect of operating variables such as reaction temperatures, Ca/S ratios and inlet $SO_2$ concentrations on the $SO_2$ removal efficiencies. $SO_2$ removal efficiency increased with reaction temperature, Ca/S ratio and inlet $SO_2$ concentration. And the addition of water vapor resulted in about 4~6% of increase in $SO_2$ removal efficiency.

Simultaneous Removal Characteristics of NOx, SOx from Combustion Gases using Plasma Chemical Reaction (플라즈마 화학반응에 의한 연소가스 중 NOx. SOx 동시제거 특성)

  • 박재윤;고용술;이재동;손성도;박상현;고희석
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1999.05a
    • /
    • pp.406-409
    • /
    • 1999
  • Experimental Investigations were carried out to remove NOx, SOx simultaneously from simulated flue gas[NO(0.02%)-SO$_2$(0.08%)-$CO_2$-Air-$N_2$] by using a plasma chemical reaction. Ammonia gas(14.81%) balanced by argon was diluted by all and was Introduced to mall simulated flue gas duct through NH$_3$ Injection system which is in downstream of reactor. The NH$_3$ molecular ratio(MR) was determined based on (NH3) to [NO+S0$_2$]. MR is 1, 1.5, 2.5. The NOx removal rate significantly increased with increasing NaOH bubble quantity. The SO$_2$ removal rate was not significantly effected by applied voltage, however it fairly Increased with increasing NH$_3$ molecule ratio. By-product aerosol particle was observed by XRD(X-ray diffraction) after sampling, The NOx, SOx removal rates, when H2O vapour bubbled by dry all was injected to plasma reactor, were better than those of other cases. When aqueous NaOH solution(20%) bubbled by 2.5( ι /min) of $N_2$ and 0.5 ( ι /min) NH$_3$(MR=1.5) were injected to simulated flue gas, The NOx. SOx removal rate was 95 ~ 100[%]

  • PDF

Analysis of Heat Exchanging Performance of Heat Recovering Device Attached to Exhaust Gas Duct (열회수장치에 의한 열회수성능 분석)

  • 서원명;윤용철;강종국
    • Journal of Bio-Environment Control
    • /
    • v.9 no.4
    • /
    • pp.212-222
    • /
    • 2000
  • This study was performed to investigate the performance of heat recovery device attached to exhaust gas flue connected to combustion chamber of greenhouse heating system. The experimental heat recovery system is mainly consisted of LPG combustion chamber and two heat recovery units; unit-A is attached directly to the exhaust gas flue, and unit-B is connected with unit-A. Heat recovery performance was evaluated by estimating total energy amounts by using enthalpy difference between two measurement points together with mass flow rate of gas and/or air passing through each heat recovery unit depending on 5 different flow rates controlled by voltage meter. The results of this experimental study, such as heat exchange behavior of supply air tubes and exhaust air passages crossing the tubes, pressure drop between inlet and outlet, heat recovery performance of exchange unit, etc., will be used as fundamental data for designing optimum heat recovery device to be used for fuel saving purpose by reducing heat loss amounts mostly wasted outside of greenhouse through flue.

  • PDF

Changes of Gas Conditions of Iron Ore Sintering Process with FGR (제철 소결의 배가스 순환 적용에 따른 가스 조건 변화)

  • Ahn, Hyungjun;Choi, Sangmin;Cho, Byungkook
    • 한국연소학회:학술대회논문집
    • /
    • 2012.04a
    • /
    • pp.19-20
    • /
    • 2012
  • Flue gas recirculation(FGR) is applied to sintering process to cope with issues including plant efficiency and environmental effects. However, it inevitably brings changes of incoming and outgoing gas conditions as plant configurations. Objective of this study was to build a process model for a sintering bed using a flowsheet process simulator and obtain information of mass and heat balance for gas flows over various process configurations with FGR.

  • PDF

Reduction of NO Emission by Two-Stage Combustion (2단 연소에 의한 NO 배출 저감에 관한 연구)

  • 유현석;최정환;오신규
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.19 no.2
    • /
    • pp.591-596
    • /
    • 1995
  • In order to investigate the reduction of NO emissions, natural gas was fueled for two-stage combustion apparatus. NO and CO emissions were described by five variables: total air ratio, primary air ratio, secondary air injection position, secondary air injection velocity, and swirl ratio. It was mainly observed that, as the primary air ratios of 0 and 0.4 NO emission decreased with increasing the secondary air injection position and secondary air injection velocity. The effect of weak swirl on NO emission was found to be insignificant.

An Experimental Study of the Characteristics with High Temperature Air Combustion in Jet Diffusion Flames (제트확산염의 고온공기연소특성에 관한 실험적 연구)

  • Cho, Eun-Seong;Ohno, Ken;Kobayashi, Hideaki;Chung, Suk-Ho
    • 한국연소학회:학술대회논문집
    • /
    • 2003.12a
    • /
    • pp.89-94
    • /
    • 2003
  • For the development of high efficiency and low emission combustion systems, high temperature air combustion technology has been tested by utilizing preheated air over 1100 K and exhaust gas recirculation. In this system, combustion air is diluted with large amount of exhaust gases ($N_2$, $CO_2$), such that the oxygen concentration is relatively low in the reaction zone, leading to low flame temperature. Since, the temperature fluctuations and sound emissions form the flame are small and flame luminosity is low, the combustion mode is expected to be flameless or mild combustion. Experiment was performed to investigate the turbulent flame structure and $NO_X$ emission characteristics in the high temperature air combustion focused on coflowing jet diffusion flames which has a fundamental structure of many practical combustion systems. The effect of turbulence has also been evaluated by installing perforated plate in the oxidizer inlet nozzle. LPG was used as a fuel. Results showed that even though $NO_X$ emission is sensitive to the combustion air temperature, the present high temperature air combustion system produce low $NO_X$ emission because it is operated in low oxygen concentration condition in excess of dilution.

  • PDF

Spraying and Combustion Characteristics of Heavy Oil in the Gun Type Burner for Hot Air Heater (온풍난방기용 건타입 중유버너의 분사특성과 연소특성)

  • 김영중;유영선;장진택;윤진하;연태용
    • Journal of Biosystems Engineering
    • /
    • v.24 no.2
    • /
    • pp.107-114
    • /
    • 1999
  • To find the best combustion conditions in the heavy oil burner kinetic viscosity of heavy oil A, B and C at different temperature range, from 40 to 140$^{\circ}C$, and the droplet sizes of the heavy oils at different temperature and pump pressure were measured. And, combustion characteristics were investigated under the different conditions : two different heavy oil and three different oil temperature. At temperature of 70, 100, 130$^{\circ}C$ the kinetic viscosity of heavy oil A and B are 7.9, 5.7, 4.3 and 30.4, 13.7, 7.9cSt, respectively. The greatest and smallest viscosity were 7,455 cSt at C oil on 27$^{\circ}C$ and 4.26cSt at A oil on 140$^{\circ}C$. The magnitude of viscosity difference between at 100$^{\circ}C$ and 140$^{\circ}C$ under 6 cSt in cases of A and B oil, but more than 30cST on C oil. Of the droplet sizes, the biggest and smallest droplet size in A oil were 98$\mu\textrm{m}$ at oil temperature of 130$^{\circ}C$(4.3cSt), pump pressure of 1.57MPa and 72$\mu\textrm{m}$ at 70$^{\circ}C$(7.9cSt), 2.35MPa, respectively. It appeared that as spraying pressure increased the droplet size decreased, however, no distinct differences were found in the effects of kinetic viscosity on the droplet sizes of the test range. The best combustion performance was observed when droplet size, spraying pressure and oil temperature were 73$\mu\textrm{m}$, 2.35MPa and 70$^{\circ}C$ producing CO2 of 13.1%, CO of 13ppm and flue gas temperature of 250$^{\circ}C$ in A oil combustion For B oil, it was100$^{\circ}C$, 2.35MPa, 52$\mu\textrm{m}$, producing CO2 of 10ppm and flue gas temperature of 260$^{\circ}C$. In general, it appeared that better combustion results were observed in the smaller droplets produced burner condition.

  • PDF