• Title/Summary/Keyword: combustion field

Search Result 537, Processing Time 0.025 seconds

$\mu\textrm{p}$-based Electronic Control System for Automobiles Part1. Electronic Engine Control System (자동차의 마이크로프로셋서를 이용한 전자식 제어시스템에 대한 연구 제1편 : 전자식 엔진 제어시스템)

  • Chae, Suk;Kim, Young-Lip;Liu, Joon;Kim, Kwang-Rak;Bien, Zeungnam
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.17 no.5
    • /
    • pp.15-21
    • /
    • 1980
  • An engine control system in which the conventional mechanical ignition system is studied. The contact point of the breaker is replaced by the contactless magnetic pick up sensor from which the information of the speed and the position of the crankshaft is extracted , and further an electronic High Energy Ignitim System Is designed, implemented and tested . The High Energy Igniticwl System increases the secondary spark voltage of the ignition coil from the conventional 10000~15000 volts to the 30000~40000 volts resulting in improving the combustion efficiency. Also, instead of the conventional advimce mechanism forigniliontiming control, a microprocessorbased timinng mechanisn is installed to determine the ignition timing data in response to the engine rpm and the intake manifold vacuum.

  • PDF

Ultralow-n SiO2 Thin Films Synthesized Using Organic Nanoparticles Template

  • Dung, Mai Xuan;Lee, June-Key;Soun, Woo-Sik;Jeong, Hyun-Dam
    • Bulletin of the Korean Chemical Society
    • /
    • v.31 no.12
    • /
    • pp.3593-3599
    • /
    • 2010
  • In an original effort, this lab attempted to employ polystyrene nanoparticles as a template for the synthesis of ordered and highly porous macroporous $SiO_2$ thin films, utilizing their high combustion temperature and narrow size distribution. However, polystyrene nanoparticle thin films were not obtained due to the low interaction between individual particles and between the particle and silicon substrate. However, polystyrene-polyacrylic acid (PS-AA) colloidal particles of a core-shell structure were synthesized by a one-pot miniemulsion polymerization approach, with hydrophilic polyacrylic acid tails on the particle surface that improved interaction between individual particles and between the particle and silicon substrate. The PS-AA thin films were spin-coated in the thickness ranges from monolayer to approximately $1.0\;{\mu}m$. Using the PS-AA thin films as sacrificial templates, macroporous $SiO_2$ thin films were successfully synthesized by vapor deposition or conventional solution sol-gel infiltration methods. Inspection with field emission scanning electron microscopy (FE-SEM) showed that the macroporous $SiO_2$ thin films consist of interconnected air balls (~100 nm). Typical macroporous $SiO_2$ thin films showed ultralow refractive indices ranging from 1.098 to 1.138 at 633 nm, according to the infiltration conditions, which were confirmed by spectroscopy ellipsometry (SE) measurements. This research shows how the synthetic control of the macromolecule such as hydrophilic polystyrene nanopaticles and silicate sol precursors innovates the optical properties and processabilities for actual applications.

Scale Effect on Combustion Characteristics of N2O/PE Hybrid Rocket (N2O/PE 하이브리드 로켓의 스케일 변화에 따른 연소특성 연구)

  • Han, Seongjoo;Moon, Keunhwan;Kim, Jinkon;Moon, Heejang
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2017.05a
    • /
    • pp.797-802
    • /
    • 2017
  • This paper describes the scale effect of hybrid rocket motor which has blow-down oxidizer supply system. ResuIts show that the scale effect on regression rate is negligible using presently accessible scaling relation for $LN_2O$/PE propellant combination amid the absence of exactly proven scaling relation. It was also found that the characteristic velocity efficiency increases as motor scale increases. However, the characteristic velocity efficiency includes complicated parameters such as post-chamber configuration or geometry which can affect the entire flow field. It is therefore hard to conclude that the increase of efficiency is solely due to the enlargement of motor scale nor draw any conclusion on the scale effect which require a profound understanding of hybrid rocket scaling rules.

  • PDF

Experimental Study for Fracture Characteristic of New Building Materials with Recycled Ash (석탄회 재활용 건설신소재 개발을 위한 파괴특성에 관한 실험적 연구)

  • Jo Byung-Wan;Park Jong-Bin;Keo Ja-Gab
    • Journal of the Korea Concrete Institute
    • /
    • v.17 no.2 s.86
    • /
    • pp.255-261
    • /
    • 2005
  • Immense quantities of coal combustion by-products are produced every year, and only a small fraction of them are currently utilized. The purpose of this study is to investigate reused techniques of coal ash in the construction field, which may contribute to the savings of building materials and conservation of environment. From the results of the compressive strength test, the elastic modulus was experimentally proposed. Also, based on the three- point-bending test, the fracture parameters - notch sensitivity, fracture energy, and initial compliance were experimentally proposed. As a result, the strength and fracture characteristics were lower than those of concrete or mortar. Also, the study showed that the deflection at a fracture decreased as the age increased and as the notch depth rate decreased. However, it was judged that its use as a building material could be expected if further research is carried out.

Environmental Issues for the Hydraulic Fracturing Applied in the Process of the Shale Gas Development (셰일가스 개발 시 적용되는 수압파쇄공법에 의한 환경문제)

  • Han, Hyeop-Jo;Kim, Kyoung-Woong;Na, Kyung-Won;Park, Hee-Won;Lee, Jin-Soo;Shim, Yon-Sik
    • Economic and Environmental Geology
    • /
    • v.46 no.1
    • /
    • pp.63-69
    • /
    • 2013
  • This paper discusses important environmental issues that must be considered during shale gas development. Shale gas has been attracting many attention as the next key energy resource with its large abundance through easily accessible production fields, and its lower carbon dioxide & sulfur dioxide emission profile upon combustion when compared to the conventional oil and natural gas resources. Successful development of a shale gas field requires the use of hydraulic fracturing to recover hydrocarbon through the very tight shale formation, which has been frequently associated with environmental contamination issue of water, soil, and atmosphere. Therefore, environmental issues and their solution to minimize environmental impact should be considered for successful development of shale play in a future.

Development of Thermal Power Boiler System Simulator Using Neural Network Algorithm (신경망 알고리즘을 이용한 화력발전 보일러 시스템 시뮬레이터 개발)

  • Lee, Jung Hoon
    • Journal of the Korea Society for Simulation
    • /
    • v.29 no.3
    • /
    • pp.9-18
    • /
    • 2020
  • The development of a large-scale thermal power plant control simulator consists of water/steam systems, air/combustion systems, pulverizer systems and turbine/generator systems. Modeling is possible for all systems except mechanical turbines/generators. Currently, there have been attempts to develop neural network simulators for some systems of a boiler, but the development of simulator for the whole system has never been completed. In particular, autoTuning, one of the key technology developments of all power generation companies, is a technology that can be achieved only when modeling for all systems with high accuracy is completed. The simulation results show accuracy of 95 to 99% or more of the actual boiler system, so if the field PID controller is fitted to this simulator, it will be available for fault diagnosis or auto-tuning.

Energy Efficiency Improvement and Field Scale Study of Crematory using Computation Fluid Dynamics (전산유동해석을 통한 화장로의 에너지 효율개선 및 실증연구)

  • Won, Yong-Tae;Lee, Seung-Mok
    • Applied Chemistry for Engineering
    • /
    • v.30 no.1
    • /
    • pp.95-101
    • /
    • 2019
  • The cremation rate of Korea in 2016 was 82.7% which is four times greater than 20.5% in 1994. As increasing the cremation rate gradually, it cause a shortage of cremation facilities resulting in building more cremation facilities to meet the increasing inquiries on cremation or a large amount of fuels for the longer operation of the crematory. In this study, the crematory system optimizing its thermal efficiency characteristics and also responding to increasing inquiries on cremation was proposed in order for solving such problems, In particular, the heat flow characteristics including a heat transfer coefficient by performing a simulation using computational fluid dynamics (CFD) was investigated. The CFD model was validated with on-site experiments for a cremation facility. As a result of the simulation, the fuel consumption decreased nearly 25% and residence time increased in the main combustor. Also, the improved crematory was constructed with an expanded combustor, heat exchanger, second combustion air system, refractory and insulation material. From on-site experiments, the energy consumption was saved to approximately 54.4%, while the burning time reduced nearly 20 minutes.

Development of a Polytropic Index-Based Reheat Gas Turbine Inlet Temperature Calculation Algorithm (폴리트로픽 지수 기반의 재열 가스터빈 입구온도 산출 알고리즘 개발)

  • Young-Bok Han;Sung-Ho Kim;Byon-Gon Kim
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.18 no.3
    • /
    • pp.483-494
    • /
    • 2023
  • Recently, gas turbine generators are widely used for frequency control of power systems. Although the inlet temperature of a gas turbine is a key factor related to the performance and lifespan of the device, the inlet temperature is not measured directly for reasons such as the turbine structure and operating environment. In particular, the inlet temperature of the reheating gas turbine is very important for stable operation management, but field workers are experiencing a lot of difficulties because the manufacturer does not provide information on the calculation formula. Therefore, in this study, we propose a method for estimating the inlet temperature of a gas turbine using a machine learning-based linear regression analysis method based on a polytropic process equation. In addition, by proposing an inlet temperature calculation algorithm through the usefulness analysis and verification of the inlet temperature calculation model obtained through linear regression analysis, it is intended to help to improve the level of reheat gas turbine combustion tuning technology.

Study on the Prediction Model of Reheat Gas Turbine Inlet Temperature using Deep Neural Network Technique (심층신경망 기법을 이용한 재열 가스터빈 입구온도 예측모델에 관한 연구)

  • Young-Bok Han;Sung-Ho Kim;Byon-Gon Kim
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.18 no.5
    • /
    • pp.841-852
    • /
    • 2023
  • Gas turbines, which are used as generators for frequency regulation of the domestic power system, are increasing in use due to the carbon-neutral policy, quick startup and shutdown, and high thermal efficiency. Since the gas turbine rotates the turbine using high-temperature flame, the turbine inlet temperature is acting as a key factor determining the performance and lifespan of the device. However, since the inlet temperature cannot be directly measured, the temperature calculated by the manufacturer is used or the temperature predicted based on field experience is applied, which makes it difficult to operate and maintain the gas turbine in a stable manner. In this study, we present a model that can predict the inlet temperature of a reheat gas turbine based on Deep Neural Network (DNN), which is widely used in artificial neural networks, and verify the performance of the proposed DNN based on actual data.

Analysis of the thermal fluid flow between the gas torch and the steel plate for the application of the line heating (선상 가열을 위한 가스 토치와 강판 사이의 열유동 해석)

  • Jong-Hun Woo;Jong-Gye Shin
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.39 no.2
    • /
    • pp.52-60
    • /
    • 2002
  • Line heating is a forming process which makes the curved surface with the residual strain created by applying heat source of high temperature to steel plate. in order to control the residual strain, it is necessary to understand not only conductive heat transfer between heat source and steel plate, but also temperature distribution of steel plate. In this paper we attempted to analyze is temperature distribution of steel plate by simplifying a line heating process to collision-effusive flux of high temperature and high velocity, and conductive heat transfer phenomenon. To analyze this, combustion in the torch is simplified to collision effusive phenomenon before analyzing turbulent heat flux. The distribution of temperature field between the torch and steel plate is computed through turbulent heat flux analysis, and the convective heat transfer coefficient between effusive flux and steel plate is calculated using approximate empirical Nusselt formula. The velocity of heat flux into steel plate is computed using the temperature distribution and convective heat transfer coefficient, and temperature field in the steel plate is obtained through conductive heat transfer analysis in which the traction is induced by velocity of heat flux. In this study, Finite Element Method is used to accomplish turbulent heat flux analysis and conductive heat transfer analysis. FEA results are compared with empirical data to verify results.