• Title/Summary/Keyword: combustion chamber flow

Search Result 440, Processing Time 0.033 seconds

Combustion Stability Rating Test of Liquid Rocket Engine Thrust Chamber (액체로켓엔진 연소기 연소안정성 평가시험)

  • Ahn, Kyubok;Kim, Jong-Gyu;Choi, Hwan-Seok
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.18 no.2
    • /
    • pp.60-66
    • /
    • 2014
  • As a evaluation method of combustion stability in a liquid rocket engine thrust chamber, external disturbance devices are used. In the paper, the study on pulse-gun ignition tests for a combustion stability rating test of a thrust chamber was performed. Charging volume of pulse-guns was determined by confirming the intensities of the pressure waves from the ignition tests in the cold-flow conditions. While using same injector head, combustion instabilities were not encountered during 14 hot-firing tests without pulse-guns but combustion instabilities were triggered by pulse-gun ignition during 2 hot-firing tests. The results showed that the pulse-gun ignition test could be the evaluation method and could reduce the hot-firing test number for the stability rating of a thrust chamber.

A Study on Soot Formation of Turbulent Premixed Propane Flames in n Constant-Volume Combustor at High Temperatures and High Pressures (고온ㆍ고압 정적 연소기내 난류 프로판 예혼합 화염의 매연생성에 관한 연구)

  • 배명환
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.9 no.4
    • /
    • pp.1-9
    • /
    • 2001
  • The soot yield has been studied by a premixed propane-oxygen-inert gas combustion in a specially designed disk-type constant-volume combustion chamber to investigate the effects of pressure, temperature and turbulence on soot formation. Premixtures are simultaneously ignited by eight spark plugs located on the circumference of chamber at 45 degree intervals in order to observe the soot formation under high pressures. The eight flames converged compress the end gases to a high pressure. The laser schlieren and direct flame photographs for observation field with 10 mm in diameter are taken to examine into the behaviors of flame front and gas flow in laminar and turbulent combustion. The soot volume fraction in the chamber center during the final stage of combustion at the highest pressure is measured by the in situ laser extinction technique and simultaneously the corresponding burnt gas temperature by the two-color pyrometry method. The pressure and temperature during soot formation are changed by varying the initial charge pressure and the volume fraction of inert gas compositions, respectively. It is found that the soot yield increases with dropping temperature and rising pressure at constant equivalence ratio, and that the soot yield of turbulent combustion decreases in comparison with that of laminar combustion because the burnt gas temperature increases with the drop of heat loss.

  • PDF

Steady Flow Characteristics of Four-Valve Cylinder Heads (실린더헤드 형상에 따른 정상유동 특성)

  • 배충식;정경석
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.4 no.5
    • /
    • pp.197-205
    • /
    • 1996
  • The flow characteristics of five different 4-valve cylinder heads were investigated in a steady flow rig using laser-Doppler velocimetry. The tumble flow of each head with pentroof combustion chamber was quantified by nondimensional tumble number using a tumble adaptor. The formation of tumbling vortex was examined in an optical single-cylinder engine which has windows for in-cylinder LDV measurements. Tumble vortex ratio was estimated from the tumble flow measurement. The four-valve cylinder heads with pent-roof combustion chamber showed the tumble vortex from the intake process, which was investigated in the steady flow test. The tumble adaptor which converts the tumble into swirl flow was found to be feasible in predicting the tumble flow in the real engine. The tumble strength in the steady flow test coincides with that in the real engine experiment within 15%. It was found that the steady flow test on the four-valve cylinder heads provides the tip for a better design of cylinder head.

  • PDF

A Study on Correlation between A/F and ion signal in a Constant-Volume Chamber Using Spark-plug Ionization Probe Itself (정적챔버에서 스파크 플러그 이온프로브를 이용한 공연비와 이온신호와의 상관관계에 대한 연구)

  • Park, Jong-Il;Chun, Kwang-Min;Hahn, Jae-Won;Park, Chul-Woong
    • 한국연소학회:학술대회논문집
    • /
    • 2002.11a
    • /
    • pp.223-229
    • /
    • 2002
  • Spark plug ionization signal could be useful in an internal combustion engine as a feedback signal for combustion diagnostics such as misfire detection, knocking detection and lambda control, but the signal has high level of cyclic fluctuation in an internal combustion engine due to residual gas, pressure, temperature, mixture composition in the spark gap. Because of this reason it is very difficult to apply ion signal to commercial engine control. In this Study, a correlation between A/F and spark plug ionization signal was studied in a constant volume chamber. Constant volume chamber with gas phase fuel(Propane) has homogeneous fuel composition , no mixture flow, same pressure and temperature on each test. The results show that mean chemi-ion signal has the highest correlation with A/F and intial pressure change has on effect on the thermal-ion signal and not on chemi-ion signal.

  • PDF

A Study on the Flow Control for Stable Combustion of Liquid Rocket (액체로켓의 연소안정을 위한 유량공급에 관한 실험적 연구)

  • Park, Hee-Ho;Kim, Yoo;Cho, Nam-Choon;Keum, Young-Tag
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.26 no.6
    • /
    • pp.788-794
    • /
    • 2002
  • In liquid rocket engine, propellant feed rate is proportional to approximately square root of the pressure difference between injector head and combustion chamber. This ΔP depends on the engine design, but in general on the order of 50psi. However, during ignition period, especially for the pressurized feed system, combustion chamber pressure is almost atmospheric and large ΔP causes over flow of propellants which may lead to catastrophic accident due to hard start. Hard start may be prevented by applying cavitating venturi or/and two step ignition. In cavitating venturi, evaporated propellants near the venturi throat become chocked and flow rate depends on only upstream condition. In two step ignition propellants are supplied to the liquid engine in two different flow rate. First step, to avoid hard start, small amount of propellants are supplied to build up chamber pressure in safe zone, then full propellants to ensure design pressure. In this study, both cavitating venturi and two step ignition method were used for the hot test and hard start problem was completely solved.

Spatial Analysis of Turbulent Flow in Combustion Chamber using High Resolution Dual Color PIV (고분해능 이색 PIV를 이용한 가솔린 엔진 연소실내 난류의 공간적 해석)

  • Lee, K.H.;Lee, C.S.;Lee, H.G.;Chon, M.S.;Joo, Y.C.
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.6 no.6
    • /
    • pp.132-141
    • /
    • 1998
  • Particle image velocimetry(PIV), a planar measuring technique, is an efficient tool for studying the complicated flow field such as in-cylinder flow, and intake port flow. PIV can be also used for analyzing the integral length scale of turbulence, which is a measure of the size of the large eddies that contain most of the turbulence kinetic energy. In this study, dual color scanning PIV was designed and demonstrated by using a rotating mirror and a beam splitter. This PIV system allowed enlargement of flexibility in the intensity of vectors to be calculated by spatial filtering technique, even in combustion chamber with high velocity gradient and high vorticity$({\sim}1000s^{-1})$. A new color image processing algorithm was developed, which was used to find the direction of particle movement directly from the digital image. These measuring techniques were successfully applied to obtaining the turbulence intensity (~0.1m/s) and the turbulent integral length scale of vorticity(~1mm).

  • PDF

Computational Fluid Dynamics Analysis of 25kW Plate Type Methane-steam Reformer (25kW급 평판형 메탄-수증기 개질기 열유동 전산해석)

  • Shin, Dong-Hoon;Seo, Hye-Gyung;Lim, Hee-Chun;Lee, Sang-Duk
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2006.06a
    • /
    • pp.103-106
    • /
    • 2006
  • The Plate reformer consisting of combustion chamber and reforming chamber for 25 kW MCFC stack has been operated and computational fluid dynamics was applied to estimate reactions and thermal fluid behavior in the reformer. The methane air 2-stage reaction was assumed in the combustion chamber, and three step steam reforming reactions were included in the calculation. Flow uniformity, reaction rate and species distribution, and temperature distribution were analyzed. In particular, temperature distribution was compared with the measurements to show good agreement in the combustion chamber, however, inappropriate agreement in the reformer chamber

  • PDF

A Study on the Flow Control for Stable Combustion of Liquid Rocket (액체로켓의 연소안정을 위한 유량공급에 관한 실험적 연구)

  • Jang, Eun-Young;Park, Hee-Ho;Kim, Sun-Ki;Kim, Yoo
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.4 no.2
    • /
    • pp.6-11
    • /
    • 2000
  • In the pressurized propellant feed system of liquid rocket, feed pressure is decided chamber pressure of normal combustion state. However, during ignition period the initial chamber pressure is atmosphere. So, it may have overflow, hard-start and even critical damage of engine. This paper proposes an improved propellant feed system for the stable combustion of liquid rocket. Hot test were already performed to verify the presented propellent feed system. The proposed propellant feed system uses two steps - pre and main combustion - to prevent large pressure increase and uses cavitating venturis for stable flow rate in whole combustion. This system feeds the flow rate lesser than the designed flow rate, so combustion pressure reached pre-combustion pressure. Cavitating venturis offer unique flow control capabilities at normal and abnormal combustion state, because flow rate is solely dependent on upstream absolute pressure and fluid properties, but independent on downstream condition.

  • PDF

Optimal Design and Test of Fuel-Rich Gas Generator

  • Lee, Changjin;Kwon, Sun-Tak
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2004.03a
    • /
    • pp.560-564
    • /
    • 2004
  • The optimal design and combustion analysis of the gas generator for Liquid Rocket Engine (LRE) were performed. A fuel-rich gas generator in open cycle turbopump system was designed for 10ton$_{f}$ in thrust with RP-1/Lox propellant. The optimal design was done for maximizing specific impulse of main combustion chamber with constraints of combustion temperature and power matching required by turbopump system. Design variables were selected as total mass flow rate to gas generator, O/F ratio in gas generator, turbine injection angle, partial admission ratio, and turbine rotational speed. Results of optimal design show the dimension of length, diameter, and contraction ratio of gas generator. Also, the combustion test was conducted to evaluate the performance of injector and combustion chamber. And the effect of the turbulence ring was investigated on the mixing enhancement in the chamber.r.

  • PDF

Combustion Test Results of Regenerative Cooling Combustor for 30 tonf-class Liquid Rocket Engine (30톤급 액체로켓엔진 연소기 재생냉각 연소시험 결과)

  • Han, Yeoung-Min;Kim, Jong-Gyu;Lee, Kwang-Jin;Lim, Byoung-Jik;Ahn, Kyu-Bok;Kim, Mun-Ki;Seo, Seong-Hyeon;Choi, Hwan-Seok
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2008.05a
    • /
    • pp.133-137
    • /
    • 2008
  • Results of combustion tests performed for a regenerative cooling combustor of a 30 tonf-class liquid rocket engine were described. The combustion chamber has chamber pressure of 60 bar, propellant mass flow rate of 89 kg/s, and nozzle expansion of 12. The combustion chamber is composed of mixing head, baffle injector, and regenerative cooling chamber. The hot firing tests were performed at design and off-design points. The test results show that the combustion characteristic velocity is in the range of 1738${\sim}$1751 m/sec and the specific impulse of the combustion chamber is in the range of 253${\sim}$270 sec. The peak of combustion characteristic velocity and specific impulse for this combustor is shown at mixture ratio of 2.35 and 2.5, respectively.

  • PDF