• Title/Summary/Keyword: combined load

Search Result 1,132, Processing Time 0.024 seconds

Tip Clearance Effects on Inlet Hot Streaks Migration Characteristics in Low Pressure Stage of a Vaneless Counter-Rotating Turbine

  • Zhao, Qingjun;Wang, Huishe;Zhao, Xiaolu;Xu, Jianzhong
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2008.03a
    • /
    • pp.25-34
    • /
    • 2008
  • In this paper, three-dimensional multiblade row unsteady Navier-Stokes simulations at a hot streak temperature ratio of 2.0 have been performed to reveal the effects of rotor tip clearance on the inlet hot streak migration characteristics in low pressure stage of a Vaneless Counter-Rotating Turbine. The hot streak is circular in shape with a diameter equal to 25% of the high pressure turbine stator span. The hot streak center is located at 50% of the span and the leading edge of the high pressure turbine stator. The tip clearance size studied in this paper is 2.0mm(2.59% high pressure turbine rotor height, and 2.09% low pressure turbine rotor height). The numerical results show that the hot streak is not mixed out by the time it reaches the exit of high pressure turbine rotor. The separation of colder and hotter fluid is observed at the inlet of low pressure turbine rotor. Most of hotter fluid migrates towards the rotor pressure surface, and only little hotter fluid migrates to the rotor suction surface when it convects into the low pressure turbine rotor. And the hotter fluid migrated to the tip region of the high pressure turbine rotor impinges on the leading edge of the low pressure turbine rotor after it goes through the high pressure turbine rotor. The migration of the hotter fluid directly results in very high heat load at the leading edge of the low pressure turbine rotor. The migration characteristics of the hot streak in the low pressure turbine rotor are dominated by the combined effects of secondary flow and leakage flow at the tip clearance. The leakage flow trends to drive the hotter fluid towards the blade tip on the pressure surface and to the hub on the suction surface, even partial hotter fluid near the pressure surface is also driven to the rotor suction surface through the tip clearance. Compared with the case without rotor tip clearance, the heat load of the low pressure turbine rotor is intensified due to the effects of the leakage flow. And the numerical results also indicate that the leakage flow effect trends to increase the low pressure turbine rotor outlet temperature at the tip region.

  • PDF

Flexible Unit Floor Plan of Off-Site Construction Housing Considering Long-Lasting Housing Certification System (장수명주택 인증을 고려한 OSC공법 주택의 가변형 평면계획 연구)

  • Lee, Ji-Eun;Roh, Jeong-Yeol;Kwon, Soo-Hye;Kim, Seung-Mo
    • Land and Housing Review
    • /
    • v.12 no.4
    • /
    • pp.103-117
    • /
    • 2021
  • With the current rapid changes in population and technology, the long-lastig housing certification system is a means of prolonging the physical and functional lifespan of a building. The certification requires differentiation between the structure and infill elements to allow for variability and ease of repairs. This works well with prefabricated houses so this study investigated the possibility of applying the long-lastig housing certification requirements to apartment construction using off-site construction (OSC) methods focused on the installation of bathrooms (plumbing and toilet) that differ from the traditional wet method. This study examined three different sized floor plans at 22 m2, 46 m2, and a combined one resulting in 69 m2. The larger 69 m2 plan utilized a removeable non-load bearing wall to increase flexibility in the layout of the floorplan. The apartments are constructed of steel reinforced concrete composite columns on a 9 m × 10.5 m grid with integrated slabs. The exterior and interior infill walls are all non-load bearing with some containing plumbing. This separation of the structure and infill walls can help meet some of the criteria in the long-lastig housing certification, particularly with the ease of repairs. Technologies that facilitate the replacement of infill elements that contain plumbing and other building services can benefit the nation by reducing carbon emissions and therefore tax incentives should be introduced to increase the adoption of the proposed construction methods.

Structural Stability Evaluation for Special Vehicle Slewing Bearing using Finite Element Analysis (유한요소해석을 통한 특수차량용 선회베어링의 구조 안전성 평가)

  • Seo, Hyun-Soo;Lee, Ho-Jun;An, Tae-Su
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.22 no.1
    • /
    • pp.511-519
    • /
    • 2021
  • Slewing bearing is applied to the transmission of rotational power of the body and turret in a special vehicle for anti-aircraft weapons that overcomes the enemy flight system approaching at low altitudes with rapid response fire. When the turret load and impact load generated when shooting are combined in performing the combat mission of a special vehicle, structural stability must be secured to achieve a successful function. Among the components of the slewing bearing, the stability of the components against the complex loads acting by the turret drive and shooting was evaluated by considering the shape and material characteristics of the ring-gear, roller, and wire-race. As a research method for stability evaluation, based on engineering theory, the strength characteristics of the components were examined by numerical calculations. Finite element analysis was performed on components using the ANSYS analysis program. The results of theoretical analysis and the results of finite element analysis were very similar. A structural stability evaluation for the slewing bearing, which was performed mainly on the analysis, confirmed that the design strength of the slewing bearing determined in the preliminary design in the early stage of localization development was sufficient.

Structural Characteristics Analysis of Steel Box Girder Bridge being stressed the PS Steel Wires at the Upper Slab of the Intermediate Support (지점부 상부슬래브에 PS강선 긴장된 강 박스거더교의 구조적 특성 분석)

  • Cha, Tae-Gweon;Jang, Il-Young
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.25 no.2
    • /
    • pp.1-7
    • /
    • 2021
  • The concrete deck slab at the continuous span support of the steel box girder bridge is a structure that is combined with the upper flange. It is a structure that can cause tension cracks in the deck slab at the support causing problems such as durability degradation in long span bridges. This is because the tensile stress in the longitudinal direction of the slab exceeds the design tensile strength due to the effects of dead load and live load when applying a long span. Accordingly, it is necessary to control tensile cracking by adding a reinforcing bar in the axial direction to the slab at the support and to introduce additional compressive stress. To solve this problem, a structural system of a steel box girder bridge was proposed that introduces compressive stress as PS steel wire tension in the tensile stress section of the upper slab in the continuous support. The resulting structural performance was compared and verified through the finite element analysis and the steel wire tension test of the actual specimen. By introducing compressive stress that can control the tensile stress and cracking of the slab generated in the negative moment through the tension of the PS steel wire, it is possible to improve structural safety and strengthen durability compared to the existing steel box girder bridge.

Self-Powered Smart Jump-Rope to Transform an Intensive Physical Activity into Electricity-Generating Fun Experience (고강도의 줄넘기 운동을 지속 가능하고 즐거운 경험으로 만들기 위한 에너지 자립형 스마트 줄넘기)

  • Jo, Jonghyun;Yeo, Jungjin;Park, Heajeong;Ryu, Munho;Yang, Yoonseok
    • Journal of the HCI Society of Korea
    • /
    • v.9 no.2
    • /
    • pp.13-21
    • /
    • 2014
  • Jump-rope is a simple and effective exercise, but its intensive exercise load and monotonous pattern make it difficult to perform consistent workout. On the other hand, jumping rope accompanies large amount of kinetic energy which can be converted into electrical energy. In this study, we designed and implemented a self-powered jump-rope which can support the low-power embedded Bluetooth system inside it. The embedded system wirelessly transmits the acceleration data measured during jumping-rope exercise to a smartphone. We also developed a smartphone app which can count the number of jumps and provide real-time feedback with sound and animated graphic effects in a game context. Pilot test using the prototype smart jump-rope verified that it can be useful to motivation for the jump-rope exercise and make the exercise more effective by providing users with precise information about their exercise. We expect that the developed self-powered jump-rope will change the exercise from an intensive physical activity into electricity-generating fun experience combined with smartphone game, which maximize the benefit of the consistent jump-rope exercise.

An Experimental Study on the Shear Behavior of RC Beams Strengthened with Near Surface Mounted and Externally Bonded CFRP Strips (표면매입 및 외부부착 탄소섬유판으로 보강된 철근콘크리트 부재의 전단 거동에 관한 실험적연구)

  • Lim, Dong-Hwan;Kwon, Yeong-Soon
    • Journal of the Korea Concrete Institute
    • /
    • v.21 no.3
    • /
    • pp.337-345
    • /
    • 2009
  • The purpose of this study is to investigate the shear strengthening effectiveness of the beams strengthened with near surface mounted (NSM) and external bonded (EB) CFRP strips. A total of nine concrete beams were made and tested. From this study, it was found that the shear stiffness and strength of the beams strengthened with NSM and EB strips were significantly improved compared to the control beam. Failure of the beam strengthened with NSM and EB strips was initiated by shear cracks, propagated diagonally to the adjacent epoxy grooves without crossing the epoxy and finally sudden diagonal crack connecting the point of application of load and flexural crack was occurred. For the beam strengthened combined with NSM and EB CFRP strips, the tensile strains in the NSM CFRP strips were observed in the range of 0.35% to 0.45% and strains with EB strips were measured about 0.3%.

Evaluation of P-M Interaction Curve for Circular Concrete-Filled Tube (CFT) Column (원형 콘크리트 충전 강관(CFT) 기둥의 P-M 상관 곡선 평가)

  • Moon, Jiho;Park, Keum-Sung;Lee, Hak-Eun
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.34 no.2
    • /
    • pp.355-365
    • /
    • 2014
  • Concrete-filled tubes (CFTs) have been used in civil engineering practices as a column of buildings and a bridge pier. CFTs have several advantages over the conventional reinforced concrete columns, such as rapid construction, enhanced buckling resistance, and inherited confinement effect. However, CFT component have not been widely used in civil engineering practice, since the design provisions among codes significantly vary each other. It leads to conservative design of CFT component. In this study, the design provisions of AISC and EC4 for CFT component were examined, based on the extensive test results conducted by previous researchers and finite element analysis results obtained in this study. Especially, the focus was made on the validation of P-M interaction curves proposed by AISC and EC4. From the results, it was found that the current design codes considerably underestimated the strength of CFT component under general combined axial load and bending. Finally, the modified P-M interaction curve was proposed and successfully verified.

Clinical application of auto-tooth bone graft material

  • Park, Sung-Min;Um, In-Woong;Kim, Young-Kyun;Kim, Kyung-Wook
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • v.38 no.1
    • /
    • pp.2-8
    • /
    • 2012
  • Introduction: Auto-tooth bone graft material consists of 55% inorganic hydroxyapatite (HA) and 45% organic substances. Inorganic HA possesses properties of bone in terms of the combining and dissociating of calcium and phosphate. The organic substances include bone morphogenetic protein and proteins which have osteoinduction capacity, as well as the type I collagen identical to that found in alveolar bone. Auto-tooth bone graft material is useful as it supports excellent bone regeneration capacity and minimizes the possibility of foreign body reaction,genetic diseases and disease transmission. Materials and Methods: Implant placement combined with osteoinductive regeneration,preservation of extraction socket, maxillary sinus augmentation, and ridge augmentation using block type,powder type, and block+powder type autobone graft materialwere performed for 250 patients with alveolar bone defect and who visited the Department of Oral and Maxillofacial Surgery, College of Dentistry, Dankook University from September 2009 to August 2011. Results: Clinical assessment: Among the 250 patients of auto-tooth bone graft, clinical assessment was performed for 133 cases of implant placement. The average initial stabilization of placed implants was 74 implant stability quotient (ISQ). Radiological assessment: The average loss of crestal bone in the mandible as measured 6 months on the average after the application of prosthesis load was 0.29 mm, ranging from 0 mm to 3.0 mm. Histological assessment: In the histological assessment, formation of new bone, densified lamellated bone, trabecular bones, osteoblast, and planting fixtures were investigated. Conclusion: Based on these results, we concluded that auto-tooth bone graft material should be researched further as a good bone graft material with osteoconduction and osteoinduction capacities to replace autogenous bone, which has many limitations.

Seismic Resistance of Cast-In-Place Concrete-Filled Hollow PC Columns (현장타설 콘크리트 채움 중공 PC기둥의 내진성능)

  • Lim, Woo-Young;Park, Hong-Gun;Oh, Jung-Keun;Kim, Chang-Soo
    • Journal of the Korea Concrete Institute
    • /
    • v.26 no.1
    • /
    • pp.35-46
    • /
    • 2014
  • Two types of cast-in-place concrete-filled hollow PC (HPC1, HPC2) columns were developed to reduce lifting load of heavy-weight PC columns and to improve the structural integrity of joints. To form the hollow PC columns, a couple of prefabricated PC panels was used for HPC1, and special hoops were used for HPC2. Lateral pressure of wet concrete on PC faces was measured while placing the concrete inside the columns. To evaluate the seismic resistance, full scale specimens of two HPC columns and a conventional RC column were tested under combined axial compression and lateral cyclic loading. The test results showed that the structural performance of the proposed HPC columns such as intial stiffness, maximum strength, and displacement ductility was comparable to that of the conventional RC column, but the energy dissipation of HPC2 slightly decreased after rebar-buckling. However, all the test specimens satisfied the energy dissipation requirement specified in ACI 374.

A Study on Relations between Shape Factor and Temperature History of Steel of Composit Beam in Standard Fire under Same Thickness Condition of Spray-type Fire Resistant Materials (동일 내화뿜칠 피복조건에서 표준화재에 노출된 합성보의 강재 온도이력 및 단면형상계수와의 관계)

  • Yeo, In-Hwan;Cho, Kyung-Suk;Cho, Bum-Yean
    • Fire Science and Engineering
    • /
    • v.26 no.6
    • /
    • pp.72-77
    • /
    • 2012
  • When the concrete and steel combined composite beam is exposed to high temperature, concrete could delay temperature rising of steel by covering or increase heat capacity of structural member. For becoming of structural reinforcing by unification between materials, fire resistance rate of composite beam would be higher than simple steel beam. The temperature rising of exposed steel of composite beam is directly related with section shape and exposure length of steel. In this study, fire resistant tests were carried out for composite beams and steel beam with same thickness of spray-type fire resistant materials in standard fire, and after that, temperature histories were analysed and compared with shape factor. The correlation between steel temperature and shape factor was showed very high. This result suggests that if it can be predict the comparative advantage of member by factor which cause the performance enhancement, it could be conclude that an Standard Accreditation method can be adjust to members without indivisual certifiicate of accreditation.