• Title/Summary/Keyword: combined forecast

Search Result 83, Processing Time 0.02 seconds

Numerical simulation of propeller exciting force induced by milling-shape ice

  • Wang, C.;Li, X.;Chang, X.;Xiong, W.P.
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.11 no.1
    • /
    • pp.294-306
    • /
    • 2019
  • On the basis of the Computational Fluid Dynamics technique (CFD) combined with the overlap grid method, this paper establishes a numerical simulation method to study the problem of ice-propeller interaction in viscous flow and carries out a simulation forecast of the hydrodynamic performance of an ice-class propeller and flow characteristics when in the proximity of milling-shape ice (i.e., an ice block with a groove cut by a high-speed revolving propeller). We use a trimmed mesh in the entire calculation domain and use the overlap grid method to transfer information between the domains of propeller rotation calculation and ice-surface computing. The grid is refined in the narrow gap between the ice and propeller to ensure the accuracy of the flow field. Comparison with the results of the experiment reveals that the error of the hydrodynamic performance is within 5%. This confirms the feasibility of the calculation method. In this paper, we calculate the exciting force of the propeller, analyze the time domain of the exciting force, and obtain the curve of the frequency domain using a Fourier transform of the time-domain curve of the exciting force. The existence of milling-shape ice before the propeller can greatly disturb the wake flow field. Unlike in open water, the propeller bearing capacity shows a downward trend in three stages, and fluctuating pressure is more disordered near the ice.

CME mean density and its change from the corona to the Earth

  • Na, Hyeonock;Moon, Yong-Jae
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.44 no.1
    • /
    • pp.50.2-50.2
    • /
    • 2019
  • Understanding three-dimensional structure and parameters (e.g., radial velocity, angular width, source location and density) of coronal mass ejections (CMEs) is essential for space weather forecast. In this study, we determine CME mean density in solar corona and near the Earth. We select 38 halo CMEs, which have the corresponding interplanetary CMEs (ICMEs), by SOHO/LASCO from 2000 to 2014. To estimate a CME volume, we assume that a CME structure is a full ice-cream cone which is a symmetrical circular cone combined with a hemisphere. We derive CME mean density as a function of radial height, which are approximately fitted to power-law functions. The average of power-law indexes is about 2.1 in the LASCO C3 field of view. We also obtain power-law functions for both CME mean density at 21 solar radii and ICME mean density at 1AU, with the average power-law index of 2.6. We estimate a ratio of CME density to background density based on the Leblanc et al.(1998) at 21 solar radii. Interestingly, the average of the ratios is 4.0, which is the same as a default value used in the WSA-ENLIL model.

  • PDF

Forecasting Exchange Rates: An Empirical Application to Pakistani Rupee

  • ASADULLAH, Muhammad;BASHIR, Adnan;ALEEMI, Abdur Rahman
    • The Journal of Asian Finance, Economics and Business
    • /
    • v.8 no.4
    • /
    • pp.339-347
    • /
    • 2021
  • This study aims to forecast the exchange rate by a combination of different models as proposed by Poon and Granger (2003). For this purpose, we include three univariate time series models, i.e., ARIMA, Naïve, Exponential smoothing, and one multivariate model, i.e., NARDL. This is the first of its kind endeavor to combine univariate models along with NARDL to the best of our knowledge. Utilizing monthly data from January 2011 to December 2020, we predict the Pakistani Rupee against the US dollar by a combination of different forecasting techniques. The observations from M1 2020 to M12 2020 are held back for in-sample forecasting. The models are then assessed through equal weightage and var-cor methods. Our results suggest that NARDL outperforms all individual time series models in terms of forecasting the exchange rate. Similarly, the combination of NARDL and Naïve model again outperformed all of the individual as well as combined models with the lowest MAPE value of 0.612 suggesting that the Pakistani Rupee exchange rate against the US Dollar is dependent upon the macro-economic fundamentals and recent observations of the time series. Further evidence shows that the combination of models plays a vital role in forecasting, as stated by Poon and Granger (2003).

A Model to Identify Expeditiously During Storm to Enable Effective Responses to Flood Threat

  • Husain, Mohammad;Ali, Arshad
    • International Journal of Computer Science & Network Security
    • /
    • v.21 no.5
    • /
    • pp.23-30
    • /
    • 2021
  • In recent years, hazardous flash flooding has caused deaths and damage to infrastructure in Saudi Arabia. In this paper, our aim is to assess patterns and trends in climate means and extremes affecting flash flood hazards and water resources in Saudi Arabia for the purpose to improve risk assessment for forecast capacity. We would like to examine temperature, precipitation climatology and trend magnitudes at surface stations in Saudi Arabia. Based on the assessment climate patterns maps and trends are accurately used to identify synoptic situations and tele-connections associated with flash flood risk. We also study local and regional changes in hydro-meteorological extremes over recent decades through new applications of statistical methods to weather station data and remote sensing based precipitation products; and develop remote sensing based high-resolution precipitation products that can aid to develop flash flood guidance system for the flood-prone areas. A dataset of extreme events has been developed using the multi-decadal station data, the statistical analysis has been performed to identify tele-connection indices, pressure and sea surface temperature patterns most predictive to heavy rainfall. It has been combined with time trends in extreme value occurrence to improve the potential for predicting and rapidly detecting storms. A methodology and algorithms has been developed for providing a well-calibrated precipitation product that can be used in the early warning systems for elevated risk of floods.

Decision support system for underground coal pillar stability using unsupervised and supervised machine learning approaches

  • Kamran, Muhammad;Shahani, Niaz Muhammad;Armaghani, Danial Jahed
    • Geomechanics and Engineering
    • /
    • v.30 no.2
    • /
    • pp.107-121
    • /
    • 2022
  • Coal pillar assessment is of broad importance to underground engineering structure, as the pillar failure can lead to enormous disasters. Because of the highly non-linear correlation between the pillar failure and its influential attributes, conventional forecasting techniques cannot generate accurate outcomes. To approximate the complex behavior of coal pillar, this paper elucidates a new idea to forecast the underground coal pillar stability using combined unsupervised-supervised learning. In order to build a database of the study, a total of 90 patterns of pillar cases were collected from authentic engineering structures. A state-of-the art feature depletion method, t-distribution symmetric neighbor embedding (t-SNE) has been employed to reduce significance of actual data features. Consequently, an unsupervised machine learning technique K-mean clustering was followed to reassign the t-SNE dimensionality reduced data in order to compute the relative class of coal pillar cases. Following that, the reassign dataset was divided into two parts: 70 percent for training dataset and 30 percent for testing dataset, respectively. The accuracy of the predicted data was then examined using support vector classifier (SVC) model performance measures such as precision, recall, and f1-score. As a result, the proposed model can be employed for properly predicting the pillar failure class in a variety of underground rock engineering projects.

Deep learning forecasting for financial realized volatilities with aid of implied volatilities and internet search volumes (금융 실현변동성을 위한 내재변동성과 인터넷 검색량을 활용한 딥러닝)

  • Shin, Jiwon;Shin, Dong Wan
    • The Korean Journal of Applied Statistics
    • /
    • v.35 no.1
    • /
    • pp.93-104
    • /
    • 2022
  • In forecasting realized volatility of the major US stock price indexes (S&P 500, Russell 2000, DJIA, Nasdaq 100), internet search volume reflecting investor's interests and implied volatility are used to improve forecast via a deep learning method of the LSTM. The LSTM method combined with search volume index produces better forecasts than existing standard methods of the vector autoregressive (VAR) and the vector error correction (VEC) models. It also beats the recently proposed vector error correction heterogeneous autoregressive (VECHAR) model which takes advantage of the cointegration relation between realized volatility and implied volatility.

Connection of Hydrologic and Hydraulic Models for Flood Forecasting in a Large Urban Watershed (대규모 도시유역의 홍수예보를 위한 수리.수문 모형의 연계)

  • Yoon, Seong-Sim;Choi, Chul-Kwan;Bae, Deg-Hyo
    • Journal of Korea Water Resources Association
    • /
    • v.41 no.9
    • /
    • pp.929-941
    • /
    • 2008
  • The objectives of this study are to propose a system for combined use of a hydrologic and a hydraulic model for urban flood forecast model and to evaluate the system on the $300km^2$ Jungrang urban watershed area, which is relatively large area as an urban watershed and consequently composed of very complex drainage pipes and streams with different land uses. In this study, SWMM for hydrologic model and HEC-RAS for hydraulic model are used and the study area is divided into 25 subbasins. The SWMM model is used for sewer drainage analysis within each subbasin, while HEC-RAS for unstready flow analysis in the channel streams. Also, this study develops a GUI system composed of mean areal precipitation input component, hydrologic runoff analysis component, stream channel routing component, and graphical representation of model output. The proposed system was calibrated for the model parameters and verified for the model applicability by using the observation data. The correlation coefficients between simulated and observed flows at the 2 important locations were ranged on 0.83-0.98, while the coefficients of model efficiency on 0.60-0.92 for the verification periods. This study also provided the possibilities of manhole overflows and channel bank inundation through the calculated water profile of longitudinal and channel sections, respectively. It can be concluded that the proposed system can be used as a surface runoff and channel routing models for urban flood forecast over the large watershed area.

A Study of Forecast System for Clear-Air Turbulence in Korea, Part II: Graphical Turbulence Guidance (GTG) System (한국의 청천난류 예보 시스템에 대한 연구 Part II: Graphical Turbulence Guidance (GTG) 시스템)

  • Kim, Jung-Hoon;Chun, Hye-Yeong;Jang, Wook;Sharman, R.
    • Atmosphere
    • /
    • v.19 no.3
    • /
    • pp.269-287
    • /
    • 2009
  • CAT (clear-air turbulence) forecasting algorithm, the Graphical Turbulence Guidance (GTG) system developed at NCAR (national center for atmospheric research), is evaluated with available observations (e.g., pilot reports; PIREPs) reported in South Korea during the recent 5 years (2003-2008, excluding 2005). The GTG system includes several steps. First, 44 CAT indices are calculated in the domain of the Regional Data Assimilation and Prediction System (RDAPS) analysis data with 30 km horizontal grid spacing provided by KMA (Korean Meteorological Administration). Second, 10 indices that performed ten best forecasting scores are selected. Finally, 10 indices are combined by measuring the score based on the probability of detection, which is calculated using PIREPs exclusively of moderate-or-greater intensity. In order to investigate the best performance of the GTG system in Korea, various statistical examinations and sensitivity tests of the GTG system are performed by yearly and seasonally classified PIREPs. Performances of the GTG system based on yearly distributed PIREPs have annual variations because the compositions of indices are different from each year. Seasonal forecasting is generally better than yearly forecasting, because selected CAT indices in each season represent meteorological condition much more properly than applying the selected CAT indices to all seasons. Wintertime forecasting is the best among the four seasonal forecastings. This is likely due to that the GTG system consists of many CAT indices related to the jet stream, and turbulence associated with the jet stream can be activated mostly in wintertime under strong jet magnitude. On the other hand, summertime forecasting skill is much less than other seasons. Compared with current operational CAT prediction system (KITFA; Korean Integrated Turbulence Forecasting System), overall performance of the GTG system is better when CAT indices are selected seasonally.

A Study on Tartan of Scotland Expressed between the Nineteenth And the Twentieth Century Fashion (19.20세기 패션에 나타난 Scotland Tartan 연구)

  • 정혜정
    • Journal of the Korean Society of Costume
    • /
    • v.41
    • /
    • pp.169-183
    • /
    • 1998
  • The Tartan, the representative check pattern and traditional costume of Scothand, is the most popualr checker which has inherited from the clans of the Scotch Highlands in the ancient times and continued to develop. It is a symbol of the Scotch culture and tadition and widely used in various ways according to status, birthplace purpose and use. Therefore, this study was intended to inquire into Tartan check. The purpose of this study attempted to make a systematic investigation of the characteristic of the Tartan check. the checker using vertical and horizontal lines which was the universal plastic element and inquire into it in terms of era, designers and combined works. By doing so, this study attempted to investigate the phase of the Tartan check in world fashion and further forecast the future of checker design applicable to the 21th-Century fashion. In addition it, attempted to investigate the features of Scottch costume unknown in our academic circles and inquire into the proless in while the Scottch has retained the originality of its own which suppressed by neighboring countries. This study could find out that the checker is the element of infinite applicability in the future. It is expected that the sophisticated and beautiful design using the checker will be presented by many Korean designer through the overall and systanatic study of the checker. On the other hand, to make an empirical study costume of other races, a comprehensive examination should be made of the social and cultural background against which locals are using their costume, through the survey of their real costume and on-spot research. It this respect, this study has some limitation in time and data collection. Besides the analysis of costume through materials and photos in museums as well as the study of cloth material and accurate colors was not con여cted in this in this study. This will remain to be study of in the future.

  • PDF

The Future Requirements and Supply of Opticians in Korea (우리나라 안경사 인력의 수급전망과 정책방향)

  • Oh, Youngho
    • Journal of Korean Ophthalmic Optics Society
    • /
    • v.15 no.4
    • /
    • pp.398-404
    • /
    • 2010
  • Purpose: Concerns had been voiced about an oversupply of optometrists in Korea. So, this study aimed to forecast the supply and demand for opticians for policy implications. Methods: Baseline Projection model combined with demographic method was adopted as the supply forecasting method and so was a ratio method using the number of physician and population using weight of healthcare utilization. Results: Under the 'physician to optician ratio', there would be a surplus of 83~700 opticians in 2010 and an undersupply of 15 to surplus of 6,118 opticians in 2025. Under the 'population to optician ratio', there would be a surplus of 1,055 opticians in 2010 and surplus of 9,376 opticians in 2025. Conclusions: We concluded that there would be oversupply for opticians until 2025, although the shortage and surplus of opticians might depend on the ratio's criteria. Hence, policies would need to be developed that could solve the imbalance in requirements and supply for opticians.