• Title/Summary/Keyword: combined forecast

Search Result 83, Processing Time 0.023 seconds

An empirical study on the combined forecasts (결합예측에 관한 실증적 연구)

  • 이우리
    • The Korean Journal of Applied Statistics
    • /
    • v.1 no.2
    • /
    • pp.10-26
    • /
    • 1987
  • If the forecasts from different, sources are combined in some way, the resulting forecasts may be more accurate than any of the individual components. In this paper, the established procedures of combining forecasts are reviewed and the alternative procedures are suggested. By the results of empirical analysis from survey data, the method of combining forecasts using the restricted regression weights, the restricted robust regression weights, and mixed regression weights are robust. We can not find the most efficient combined forecasts in any case if we select the corresponding decision by preliminary analysis for the statistical properties of individual dorecasts, our results of combined forecast can became useful.

Estimating PMSG Wind Turbines by Inertia and Droop Control Schemes with Intelligent Fuzzy Controller in Indian Development

  • Josephine, R.L.;Suja, S.
    • Journal of Electrical Engineering and Technology
    • /
    • v.9 no.4
    • /
    • pp.1196-1201
    • /
    • 2014
  • This paper presents an exploration on the effect of wind turbine contribution to the frequency control of individual systems that can be used for efficient power production in India. The research includes the study of Permanent Magnet Synchronous Generator (PMSG), in wind farms. The WTs are tested for inertia and for droop responses with intelligent fuzzy logic controllers (FLC) that choose Double Input Single Output (DISO) strategy that automatically sets gain constants, as well as combined responses for the WTs. Quantitative analyses are presented for the WTs for benefits and drawbacks including appropriate selection parameters. The analysis includes inertia, droop and combined inertia, droop schemes. The reconnaissance also incorporates inertia with FLC, droop with FLC, inertia and droop with FLC schemes for detailed study of WTs, so as to forecast and achieve proper frequency control. Moreover, the analysis provides the best suited method for frequency control in PMSG.

Mortality Forecasting for the Republic of Korea: the Coherent Lee-Carter Method (한국의 사망력 추계 : 통합 Lee-Carter 방법)

  • Kim, Soo-Young
    • Korea journal of population studies
    • /
    • v.34 no.3
    • /
    • pp.157-177
    • /
    • 2011
  • This paper examines the performance of the coherent Lee-Carter method for the mortality forecasting for the Republic of Korea combined with Japan and the Taiwan Province of China as a group by comparing it with the separately applied Lee-Carter method. It narrowed the gap of life expectancies between three countries from 6.8 years to 3.0 years in 2050, with higher life expectancy forecasts for the Taiwan Province of China and lower ones for Japan than with the separate forecast. This method did not affect the sex-combined life expectancy forecast for the Republic of Korea, but it accelerated the mortality decline for ages 65 and over and decelerated it for the younger age groups, diminishing sex differentials of life expectancy at a slower speed. It suggests that the integration of regional mortality information into mortality forecasting of one country gives several advantages in terms of short run fit within each country as well as long run convergence between countries, a modification of the age pattern of mortality decline, and a consistent application of the forecasting of subgroups within a country.

Effect of Nonuniform Vertical Grid on the Accuracy of Two-Dimensional Transport Model

  • Lee, Chung-Hui;Cheong, Hyeong-Bin;Kim, Hyun-Ju;Kang, Hyun-Gyu
    • Journal of the Korean earth science society
    • /
    • v.39 no.4
    • /
    • pp.317-326
    • /
    • 2018
  • Effect of the nonuniform grid on the two-dimensional transport equation was investigated in terms of theoretical analysis and finite difference method (FDM). The nonuniform grid having a typical structure of the numerical weather forecast model was incorporated in the vertical direction, while the uniform grid was used in the zonal direction. The staggered and non-staggered grid were placed in the vertical and zonal direction, respectively. Time stepping was performed with the third-order Runge Kutta scheme. An error analysis of the spatial discretization on the nonuniform grid was carried out, which indicated that the combined effect of the nonuniform grid and advection velocity produced either numerical diffusion or numerical adverse-diffusion. An analytic function is used for the quantitative evaluation of the errors associated with the discretized transport equation. Numerical experiments with the non-uniformity of vertical grid were found to support the analysis.

Prediction of carbon dioxide emissions based on principal component analysis with regularized extreme learning machine: The case of China

  • Sun, Wei;Sun, Jingyi
    • Environmental Engineering Research
    • /
    • v.22 no.3
    • /
    • pp.302-311
    • /
    • 2017
  • Nowadays, with the burgeoning development of economy, $CO_2$ emissions increase rapidly in China. It has become a common concern to seek effective methods to forecast $CO_2$ emissions and put forward the targeted reduction measures. This paper proposes a novel hybrid model combined principal component analysis (PCA) with regularized extreme learning machine (RELM) to make $CO_2$ emissions prediction based on the data from 1978 to 2014 in China. First eleven variables are selected on the basis of Pearson coefficient test. Partial autocorrelation function (PACF) is utilized to determine the lag phases of historical $CO_2$ emissions so as to improve the rationality of input selection. Then PCA is employed to reduce the dimensionality of the influential factors. Finally RELM is applied to forecast $CO_2$ emissions. According to the modeling results, the proposed model outperforms a single RELM model, extreme learning machine (ELM), back propagation neural network (BPNN), GM(1,1) and Logistic model in terms of errors. Moreover, it can be clearly seen that ELM-based approaches save more computing time than BPNN. Therefore the developed model is a promising technique in terms of forecasting accuracy and computing efficiency for $CO_2$ emission prediction.

Use of the Moving Average of the Current Weather Data for the Solar Power Generation Amount Prediction (현재 기상 정보의 이동 평균을 사용한 태양광 발전량 예측)

  • Lee, Hyunjin
    • Journal of Korea Multimedia Society
    • /
    • v.19 no.8
    • /
    • pp.1530-1537
    • /
    • 2016
  • Recently, solar power generation shows the significant growth in the renewable energy field. Using the short-term prediction, it is possible to control the electric power demand and the power generation plan of the auxiliary device. However, a short-term prediction can be used when you know the weather forecast. If it is not possible to use the weather forecast information because of disconnection of network at the island and the mountains or for security reasons, the accuracy of prediction is not good. Therefore, in this paper, we proposed a system capable of short-term prediction of solar power generation amount by using only the weather information that has been collected by oneself. We used temperature, humidity and insolation as weather information. We have applied a moving average to each information because they had a characteristic of time series. It was composed of min, max and average of each information, differences of mutual information and gradient of it. An artificial neural network, SVM and RBF Network model was used for the prediction algorithm and they were combined by Ensemble method. The results of this suggest that using a moving average during pre-processing and ensemble prediction models will maximize prediction accuracy.

Probabilistic Time Series Forecast of VLOC Model Using Bayesian Inference (베이지안 추론을 이용한 VLOC 모형선 구조응답의 확률론적 시계열 예측)

  • Son, Jaehyeon;Kim, Yooil
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.57 no.5
    • /
    • pp.305-311
    • /
    • 2020
  • This study presents a probabilistic time series forecast of ship structural response using Bayesian inference combined with Volterra linear model. The structural response of a ship exposed to irregular wave excitation was represented by a linear Volterra model and unknown uncertainties were taken care by probability distribution of time series. To achieve the goal, Volterra series of first order was expanded to a linear combination of Laguerre functions and the probability distribution of Laguerre coefficients is estimated using the prepared data by treating Laguerre coefficients as random variables. In order to check the validity of the proposed methodology, it was applied to a linear oscillator model containing damping uncertainties, and also applied to model test data obtained by segmented hull model of 400,000 DWT VLOC as a practical problem.

Structural damage identification based on transmissibility assurance criterion and weighted Schatten-p regularization

  • Zhong, Xian;Yu, Ling
    • Structural Engineering and Mechanics
    • /
    • v.82 no.6
    • /
    • pp.771-783
    • /
    • 2022
  • Structural damage identification (SDI) methods have been proposed to monitor the safety of structures. However, the traditional SDI methods using modal parameters, such as natural frequencies and mode shapes, are not sensitive enough to structural damage. To tackle this problem, this paper proposes a new SDI method based on transmissibility assurance criterion (TAC) and weighted Schatten-p norm regularization. Firstly, the transmissibility function (TF) has been proved a useful damage index, which can effectively detect structural damage under unknown excitations. Inspired by the modal assurance criterion (MAC), TF and MAC are combined to construct a new damage index, so called as TAC, which is introduced into the objective function together with modal parameters. In addition, the weighted Schatten-p norm regularization method is adopted to improve the ill-posedness of the SDI inverse problem. To evaluate the effectiveness of the proposed method, some numerical simulations and experimental studies in laboratory are carried out. The results show that the proposed method has a high SDI accuracy, especially for weak damages of structures, it can precisely achieve damage locations and quantifications with a good robustness.

Pre-study for Polar Routes Space Radiation Forecast Model Development (극항로 우주방사선 예보 모델 개발을 위한 사전 연구)

  • Hwang, Junga;Shin, Daeyun
    • Journal of Satellite, Information and Communications
    • /
    • v.8 no.1
    • /
    • pp.23-30
    • /
    • 2013
  • In this study, we summarized the results of "Pre-study for the development of Polar route space radiation forecast model", funded by National Meteorological Satellite Center, Korea Meteorological Administration. We investigated the aviation space weather-related literature and the airline companies's operation manual associated with the space weather. We also identify the strengths and weaknesses of many pre-existing space radiation calculation programs, and find the potential to be improved. Until now, we don's have our own space radiation calculation program, so we need more improved space radiation calculation program which will be developed by ourselves. Currently most space radiation calculation programs cannot reflect temporary variations in the solar activities and the space weather. Here we analyzed the strengths and weaknesses of those programs, which are widely used in typical space radiation calculations. Finally to reflect the real-time space weather effects in the forecast model, we need to develop more precise forecast model. For that purpose, we suggest the following four steps: (1) at first, we have to choose the ground-based radiation dose calculation program, (2) we have to select a proper atmospheric model in aircraft altitude, (3) we combine the selected ground cosmic radiation dose calculation program and the selected atmospheric model, and finally (4)we have to reflect the real time space weather information and space weather forecast into the newly combined model.

An Analysis of Model Bias Tendency in Forecast for the Interaction between Mid-latitude Trough and Movement Speed of Typhoon Sanba (중위도 기압골과 태풍 산바의 이동속도와의 상호작용에 대한 예측에서 모델 바이어스 경향분석)

  • Choi, Ki-Seon;Wongsaming, Prapaporn;Park, Sangwook;Cha, Yu-Mi;Lee, Woojeong;Oh, Imyong;Lee, Jae-Shin;Jeong, Sang-Boo;Kim, Dong-Jin;Chang, Ki-Ho;Kim, Jiyoung;Yoon, Wang-Sun;Lee, Jong-Ho
    • Journal of the Korean earth science society
    • /
    • v.34 no.4
    • /
    • pp.303-312
    • /
    • 2013
  • Typhoon Sanba was selected for describing the Korea Meteorological Administration (KMA) Global Data Assimilation Prediction System (GDAPS) model bias tendency in forecast for the interaction between mid-latitude trough and movement speed of typhoon. We used the KMA GDAPS analyses and forecasts initiated 00 UTC 15 September 2012 from the historical typhoon record using Typhoon Analysis and Prediction System (TAPS) and Combined Meteorological Information System-3 (COMIS-3). Sea level pressure fields illustrated a development of the low level mid-latitude cyclogenesis in relation to Jet Maximum at 500 hPa. The study found that after Sanba entered the mid-latitude domain, its movement speed was forecast to be accelerated. Typically, Snaba interacted with mid-latitude westerlies at the front of mid-latitude trough. This event occurred when the Sanba was nearing recurvature at 00 and 06 UTC 17 September. The KMA GDAPS sea level pressure forecasts provided the low level mid-latitude cyclone that was weaker than what it actually analyzed in field. As a result, the mid-latitude circulations affecting on Sanba's movement speed was slower than what the KMA GDAPS actually analyzed in field. It was found that these circulations occurred due to the weak mid-tropospheric jet maximum at the 500 hPa. In conclusion, the KMA GDAPS forecast tends to slow a bias of slow movement speed when Sanba interacted with the mid-latitude trough.