• Title/Summary/Keyword: combined forces

Search Result 324, Processing Time 0.031 seconds

Multi-Objective Optimum Shape Design of Rotor-Bearing System with Dynamic Constraints Using Immune-Genetic Algorithm (면역.유전 알고리듬을 이용한 로터 베어링시스템의 다목적 형상최적설계)

  • Choe, Byeong-Geun;Yang, Bo-Seok
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.7 s.178
    • /
    • pp.1661-1672
    • /
    • 2000
  • An immune system has powerful abilities such as memory, recognition and learning how to respond to invading antigens, and has been applied to many engineering algorithms in recent year. In this pap er, the combined optimization algorithm (Immune- Genetic Algorithm: IGA) is proposed for multi-optimization problems by introducing the capability of the immune system that controls the proliferation of clones to the genetic algorithm. The optimizing ability of the proposed combined algorithm is identified by comparing the result of optimization with simple genetic algorithm for two dimensional multi-peak function which have many local optimums. Also the new combined algorithm is applied to minimize the total weight of the shaft and the transmitted forces at the bearings. The inner diameter oil the shaft and the bearing stiffness are chosen as the design variables. The dynamic characteristics are determined by applying the generalized FEM. The results show that the combined algorithm and reduce both the weight of the shaft and the transmitted forces at the bearing with dynamic conatriants.

Analysis of the Dynamic Behavior and Characteristics of the CNG Compressor Considering Bearing Characteristics (베어링 특성을 고려한 CNG 압축기의 동적 거동 및 동특성 해석)

  • Kim, Tae-Jong
    • Tribology and Lubricants
    • /
    • v.22 no.6
    • /
    • pp.342-349
    • /
    • 2006
  • In this study, a dynamic behavior of rotor-bearing system used in CNG compressor has been investigated using the combined methodologies of finite elements and transfer matrices. The finite element is formulated including the field element for a shaft section and the point element for roller bearings. The Houbolt method is used to consider the time march for the integration of the system equations. The transient whirl response of rotating shaft supported on roller bearings is obtained, considering compression forces and unbalance forces at eccentric crank-pin part. And, the steady state displacements of the rotor are compared with a variation in stiffness coefficient of roller bearings. Results show that the loci of crankshaft considering unbalance forces and external compression forces are more severe in whirl motion than with only unbalance forces.

Broadband Acoustic Power Radiation from a Finite Plate Excited by Random Forces in a Subsonic Flow Field

  • Lee, Hyo-Keun
    • The Journal of the Acoustical Society of Korea
    • /
    • v.19 no.1E
    • /
    • pp.27-37
    • /
    • 2000
  • This paper presents a simplified analytical formulation for computing acoustic power radiation from a rectangular plate exposed to random forces such as turbulent boundary layer pressure fluctuations and arbitrary mechanical force in a subsonic flow field. The expression for the acoustic power is derived using modal expansion method and light fluid loading is assumed on the plate. In order to simplify the formulation for acoustic power due to combined excitations of mechanical forces and turbulent pressures, it is assumed that the structural damping of the plate is small and excitations are broadband random forces having frequency spectra above the convective coincidence. Under these assumptions, an approximate solution for the broadband acoustic power radiation from a plate excited by both turbulent pressures and arbitrary mechanical forces is obtained and evaluated considering the effect of modal coupling on the radiated acoustic power. An efficient method is also suggested to compute modal acoustic impedance in a moving fluid medium by using averaged Green function.

  • PDF

Analysis of mechanical properties of microtubules under combined effects of surface and body forces for free and embedded microtubules in viscoelastic medium

  • Farid, Khurram;Taj, Muhammad
    • Advances in concrete construction
    • /
    • v.13 no.3
    • /
    • pp.255-264
    • /
    • 2022
  • Vibration is expected to occur in microtubules as tubular heterodimers. They oscillate like electric dipoles. Several research studies have estimated a frequency of vibration using the orthotropic model, a beam or rod like models and shell models, considering the surface forces. The effects of body forces on the dynamics of the microtubules were not yet taken into account. This study seeks to capture the body force effects on the vibration modes generated and on the corresponding frequency for microtubules. An orthotropic elastic shell model for the structural details of microtubules is used for the analysis. The tests are conducted out for microtubules, exposed to electro-magnetic and gravitational forces, the transverse vibration, radial mode vibration, and axial mode of vibration have accomplished. We therefore, evaluate and compare microtubules' frequencies with prior results of vibration frequency without the effects of body force.

Hydrophobicity and Nanotribological Properties of Silicon Channels coated by Diamond-like Carbon Films

  • Pham, Duc Cuong;Na, Kyung-Hwan;Pham, Van Hung;Yoon, Eui-Sung
    • KSTLE International Journal
    • /
    • v.10 no.1_2
    • /
    • pp.1-5
    • /
    • 2009
  • This paper reports an investigation on nanotribological properties of silicon nanochannels coated by a diamond-like carbon (DLC) film. The nanochannels were fabricated on Si (100) wafers by using photolithography and reactive ion etching (RIE) techniques. The channeled surfaces (Si channels) were then further modified by coating thin DLC film. Water contact angle of the modified and unmodified Si surfaces was examined by an anglemeter using the sessile-drop method. Nanotribological properties, namely friction and adhesion forces, of the Si channels coated with DLC (DLC-coated Si channels) were investigated in comparison with those of the flat Si, DLC-coated flat Si (flat DLC), and Si channels, using an atomic force microscope (AFM). Results showed that the DLC-coated Si channels greatly increased hydrophobicity of silicon surfaces. The DLC coating and Si channels themselves individually reduced adhesion and friction forces of the flat Si. Further, the DLC-coated Si channels exhibited the lowest values of these forces, owing to the combined effect of reduced contact area through the channeling and low surface energy of the DLC. This combined modification could prove a promising method for tribological applications at small scales.

Study on the Current Status and Future Vision of ROK-US Wargame Model Interoperability (한미 워게임모형 상호운용성의 현실태 및 향후 비전에 관한 연구)

  • Kwon, O-Jeong;Lee, Chong-Ho;Lee, Sang-Heon
    • Journal of the Korea Society for Simulation
    • /
    • v.17 no.1
    • /
    • pp.23-32
    • /
    • 2008
  • In this paper, we discuss the current status of ROK-US wargame model interoperability and propose the future federation architecture. ROK and US Armed Forces have made an effort to make their wargame model interoperable to fulfill operational requirements since 1999. Currently, they have achieved some degree of their final goals even though there is long way to go. ROK Armed Forces is now considering future federation architecture. We propose the future federation architecture of ROK-US wargame model interoperability considering technical advantages and system availability. It will be the next federation architecture led by ROK side for the ROK Armed Forces joint exercise and ROK-US combined exercise.

  • PDF

Assessment of Safety and Load Carrying Capacity of Aged Jacket-Typed Dolphin by Ship-Impact Test (선박접안시험을 통한 자켓식 돌핀부두의 내하력 평가 방법 연구)

  • Jo, Byung-Wan;Kwon, Oh-Hyuk
    • Journal of Ocean Engineering and Technology
    • /
    • v.12 no.3 s.29
    • /
    • pp.9-18
    • /
    • 1998
  • An improved evaluation method of load-carrying capacity for the large-scaled offshore structures, which subjected to the axial force and bending moments simultaneously at the piles, was suggested with reliability analysis and advanced working stress method. Reliability analysis requires the fracture probability and safety factor(${beta}$) for each of forces and the load-carrying capacity due to combined action of axial force and bending moments from $P_n - {beta}$ Curve. The combined equation due to those forces, which suggested by the Korean Specification for the marine structure, was derived for the advanced working stress method and applied to evaluate the load-carrying capacity of jacket-type dolphin piers.

  • PDF

Measurement of Developing Turbulent Flows in a 90-Degree Square Bend with Spanwise Rotation

  • Choi Young Don;Kim Dong Chul;Lee Kun Hee
    • Journal of Mechanical Science and Technology
    • /
    • v.19 no.7
    • /
    • pp.1503-1516
    • /
    • 2005
  • Mean flow and turbulence properties of developing turbulent flows in a 90 degree square bend with span-wise rotation are measured by a hot-wire anemometer. A slanted wire is rotated into 6 orientations and the voltage outputs from them are combined to obtain the mean velocity and the Reynolds stress components. Combined effects of the centrifugal and Coriolis forces due to the curvature and the rotation of the bend on the mean motion and turbulence structures are investigated experimentally. Results show that the two body forces can either enhance or counteract each other depending on the flow direction in the bend.

Nonlinear analysis of reinforced concrete beam elements subject to cyclical combined actions of torsion, biaxial flexure and axial forces

  • Cocchi, Gian Michele;Tiriaca, Paolo
    • Structural Engineering and Mechanics
    • /
    • v.17 no.6
    • /
    • pp.829-862
    • /
    • 2004
  • This paper presents a method for the nonlinear analysis of beam elements subjected to the cyclical combined actions of torsion, biaxial flexure and axial forces based on an extension of the disturbed compression field (DSFM). The theoretical model is based on a hybrid formulation between the full rotation of the cracks model and the fixed direction of the cracking model. The described formulation, which treats cracked concrete as an orthotropic material, includes a new approach for the evaluation of the re-orientation of both the compression field and the deformation field by removing the restriction of their coincidence. A new equation of congruence permits evaluating the deformation of the middle line. The problem consists in the solution of coupled nonlinear simultaneous equations expressing equilibrium, congruence and the constitutive laws. The proposed method makes it possible to determine the deformations of the beam element according to the external stresses applied.

A Study for Analyzing Operations Effectiveness of Joint Coastal Security System (합동 해안경계시스템 작전효과 분석에 관한 연구)

  • Kim, Taeho;Han, Hyun Jin;Lee, Byeong-Ho;Shin, Young-Tae
    • Annual Conference of KIPS
    • /
    • 2021.11a
    • /
    • pp.379-382
    • /
    • 2021
  • 합동 해안경계시스템은 해상경계시스템과 해안대침투경계시스템으로 구성되며 주로 해군이 해상경계를, 육군이 해안경계를 책임지고 있는 시스템이다. 해군 및 육군의 다양한 무기체계가 복합적으로 운용되는 해안경계시스템의 작전효과를 시뮬레이션 기법을 이용하여 분석하였다. 작전효과 분석을 통해 현재 운용중인 해안경계시스템의 기상상태별 작전성공률 계량화가 가능하였다. 연구결과는 효과적인 합동 해안경계시스템을 구축하고 체계적인 경계작전을 수행하는데 활용될 수 있다.