27

Broadband Acoustic Power Radiation from a Finite Plate

Excited by Random Forces in a Subsonic Flow Field

*Hyo-Keun Lee

Abstract

This paper presents a simplified analytical formulation for computing acoustic power radiation from a rectangular plate

exposed to random forces such as turbulent boundary layer pressure fluctuations and arbitrary mechanical force in a

subsonic flow field. The expression for the acoustic power is derived using modal expansion method and light fluid

loading is assumed on the plate. In order to simplify the formulation for acoustic power due to combined excitations of

mechanical forces and tutbulent pressures, it is assumed that the structural damping of the plate is small and excitations

are broadband random forces having frequency spectra above the convective coincidence. Under these assumptions, an

approximate solution for the broadband acoustic power radiation from a plate excited by both wrbulent pressures and

arbitrtary mechanical forces is obtained and evaluated considering the effect of modal coupling on the radiated acoustic

power. An efficient method is also suggested to compute modal acoustic impedance in a moving fluid medium by using

averaged Green function.

I. Introduction

Many researchers have focused their attention on the
acoustic power radiation from finite plates excited by
turbulent boundary layer (TBL) pressure only[l], or by
random mechanical forces only in a stationary fluid
medium[2], or by time-dependent broadband mechanical
forces only in a moving fluid medium(3). However there
have been no attempts to formulate the acoustic radiation
from a plate due to the excitations by both flow
turbulence and mechanical forces including the effect of
moving fluid and modal coupling. This paper presents a
simplified analytical formulation for the acoustic power
radiation from a rectangular plate in an infinite rigid baffle
placed in a subsonic flow field excited by both turbulent
boundary layer pressure fluctuations and random
mechanical forces. This analysis gives the possibility of
reducing the acoustic power level by applying auxiliary
mechanical forces. In order to numerically predict the
acoustic radiation, precise knowledge both about the force
coupling effects between structural mode and the two
forcing terms (flow turbulence and mechanical forces)
and about the acoustic coupling effects between structural
mode and acoustic fluid is very important,

The computation of modal acoustic impedance, which
describes the interaction of a structural mode with
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acoustic medium, has received considerable attention. The
analysis is mostly based on the use of an in vacuo modal
expansion for the vibration field, acoustic pressure and
forcing functions. Many authors[4-7) have studied modal
acoustic impedance of a rectangular plate positioned in a
stationary fluid medium. Chang and Lechey[8] calculated
the modal acoustic impedance in the presence of a moving
fluid, using a modified Chebyshev quadrature. In this work,
an alternative approach is suggested to efficiently
compute the modal coupling impedance in a moving
fluid medium, by using averaged Green function in
wavenumber domain. The coupling of a structural mode
with TBL pressure fluctuations is also studied. Chase
model[9,10] was used for the TBL pressure fluctuations.
It is known that Chase model more accurately describes
low-wavenumber spectrum than Corcos formulation[11]
does, even it shows high peaks at the convective
wavenumber (high-wavenumber) region. In this study, the
formulation and evalvation of auto- and cross-modal
coupling coefficients between structural mode and flow
turbulence are presented. Cross-modal coupling between
modal forcing terms plays an important role in the
presence of high structural damping and structural modal
degeneracy when fluid loading is light.

Numerical evafuation of the acoustic power is extremely
time-consuming for broadband random excitations. In
order to obtain an approximate solution, it is assumed
that the plate structural damping is low and fluid leading
is light. Under these assumptions, the approximate
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solution of the acoustic power can be easily obtained
and evaluated by using the Chase model of turbulent
spectrum  and the types of
arbitrary mechanical forces in a moving fluid medium.
This approach can be used to design auxiliary mechanical
forces to reduce the acoustic power radiation from a

wavenumber-frequency

plate due to turbulent pressure fluctuations.

II. Theoretical Analysis of Acoustic Power
Radiation

2.1. Exact solution

Consider a thin rectangular plate of length /. and
width 7, in an infinite rigid baffle excited by TBL
pressure fluctuations and mechanical forces in the presence
of a vniform subsonic flow, as shown in Figure 1. The
flow is in the region of z > 0 and moves toward the
positive x-direction. It is assumed that neither the plate
vibration nor the acoustic pressure field affect the forcing
temns. For simplicity, the effects of the back reaction of
the radiated pressure on the plate due to the medium
such as air will be neglected and a constant structural
loss factor is assumed.

z Turbulent pressure
/” P
flow 5
I plate
x
L lf(x,y,t)
Auxiliary mechanicat force
Figure 1. Schematic view of plate model.
The vibration equation for the plaie velocity

v(x,y,@) under the actions of TBL pressure

Phx, v, w) and mechanical force Ax,v, @) with the use

of ¢ ™ time dependence is

DA—-ipvivix,y0) —pwvix.y o= "
—iw[Ax y, @) —plx, y, ®)]

where damping is modeled as a constant structural
loss factor 3. D is the flexvral rigidity, p, is the mass

per unit area of the plate, and ¢ is the circular
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frequency. If viscous damping is assumed, the damping
term will be c,v{(x,y,0) in Eq. (1) where ¢, is the
viscous damping coefficient per unit area.

Expanding the plate velocity, mechanical force and

turbulent  pressure  with  the plate  eigenfunctions
D walx, ¥) gives
v (£,9,0)= 2 v an @D mi(.3.), (2a)
R0} = T ful O (7, 5.), @2b)
p,{x, v, GJ} = g‘.,”ﬁfm(w)g mn(x» v, ), (2c)

where

the (m,n) mode and so on. The orthogonal property of
the eigenfunctions can be expressed as

V mal@) is the medal velocity amplitude of

& ole
o J) @ 2,900 o5, Y)cdxdy= 3,0, 3

where §,,, and J,, denote the Kronecker delta functions.

After substituting Eq. (2) into Eq. (1) and wtilizing the
orthonormal properties of the eigenfunctions, the modal
equation for the plate velocity is easily obtained as

V (@) = Yl O frun @) = i )] “

whete Y,.(w) is the modal mobility function of the
plate defined as
Yol @) == i [0 @hn = @ = i70n)]

and @, is the (mn)th undamped natural frequency.

The wave equation for the acoustic pressure p(x,y,zf)
in a uniform flow field is given as

2
vy b (b ue ) Hx 2.2, D=0 ©)

where ¢ is the sound speed in fluid and u, is the
free stream velocity in the x-direction. The acoustic
pressure must satisfy the following boundary condition at
the outer edge of the boundary layer:

_ 2
Menz=dl o LT ulzrt) O

where p(x,v,8,$ is the acoustic pressure at
{x,y.0), & is the thickness of the boundary layer, o
is the density of the acoustic medium and w(x,y,t) is the

plate displacement. When the boundary layer is much
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thinner than one wavelength of the acoustic wave, ie.,
d< <, it can be assemed that p(x,y,8, ) =p(x, »,0,
in Eq. (6). The modal acoustic -pressure p,,{(w} at the

plate surface can be defined as

Iy ok ’
@)= [ [ H5.5.0,0)0 plx.)dsdy. @)

After some reatrangement, the relationships between
the modal acoustic pressure and the modal velocity can
be derived as

Pmk @) =pc ;rzmnqr( @)V W) @)

where 2,.,,(w) is a modal acoustic impedance,

connecting the (m,n) modal acoustic pressure and the
(g,r) modal velocity, defined as

ZpneA @) = Ry (@) — 12X 0k @)

= _(_2'?1'? J‘:a f—wmaz(kx' &y, )3 il ks, ky)

DB Ak, b )ddR,.

&)

where k=w@fc is the acoustic wavenumber,
a(k)=1— Mk [k, M= u.jc is the Mach number, and
Gk, k,, @) is Green function[8] in a moving acoustic

medium defined as
Clhy, by, 0) =K — (1 — MO — 2kMk— ¥2) ™1

Also, in Eq. (9),
b pte -k x
B kb= [ [0 e p)e™ auty  10)

is the shape function for the (g, +) mode @ :,,,,(k,,,k,,)

is the complex conjugate of @ ,,(k,, k,)

If the modal pressure is expressed in terms of the
modal velocities, the acoustic power can be easily
calculated. The acoustic power radiated from a plate
under the action of stationary random forces is given by

W= —215 f_c: J:, J:I(x, v, w)dxdvde

L=t .1 .
=oz [0, J, Re tim g x50, D0

(%, y, w, Ddxdydw

{1an

where p(x,yv,0,T) and v (x,y,@, T) are the
T-truncated ensembles of the surface acoustic pressure
and velocity and T is the time interval of the stationary
random process. Substituting Egs. (2), (4) and (8) into
Eq. (11) and utilizing the orthonormal properties of the
eigenfunctions, the exact expression for the acoustic
power is found to be-

W= 2 2 Wonyr 12)

Wm = -éL}Cr Re{ j‘;wzmwr( (&l} Tm( CU) YW( (,u) X

[F ol @) + T pomn (@) - C ok @) = Crner (@) )dw}
13)

where F,.,(w)— %Fi_.n;lo(zjf DS (@, Dl 0, T),
T pmal @) — %,i_l:nm{Zr’T)ﬂLr(w, D@, T). and

Carma{ @) — im(2/ Df o, (@, Dt w, T). Here,

Fom(@) 1is the onesided modal spectral density
function of the mechanical forces between (g,7) and
{m,n) modes, T, w) is the modal spectral density
function of turbulent pressure fields, and C,,,.(«@) is
the modal coupling forcing term between the mechanical
force and the turbulent pressure. Notice that the
integration range has been changed from O to positive
infinity because of the definitions of one-sided spectra of
the forcing functions.

It is assumed that the force fields are stationary and
statistically homogeneous. Then, F,,.{(w) is easily
obtained. T,,..,{®) can be calculated using the definitions

of the wavenumber-frequency Fourier transformation,
given in Eq. (10), as follows:

Tl @) = lim -2T f Apx(x. v, Do (x,9 )Ydedy
Lb?(x, v, 0, 1O (x, ¢, )dxdy

= —'('2';”:)_2 f_wm f_mm Sp{kx. ky, CU)E ;r(kx, ky)
B by, )k A,
(14)

where § Kk, &y, @), is the wavenumber-frequency

spectral density function of the TBL pressure field.
However, it is difficult to evaluate the coupling forcing

terms  C,mm( @), because the modal turbulent pressure
Phn(@) can mot be defined analytically and the

wavenumbet-frequency spectrum 3 ,(%,. &, @} of TBL
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pressure field can be obtained only from experimental
observations.

In order to obtain the relationship between the spectra
of the mechanical force and the turbulent pressure, only
the acoustic response well above convective-coincidence
frequency (wq= uo{p, /D)%) for turbulent excitation is
assumed to be of interest. Then the wavenumber spectrum of

S,(k., k, @) becomes sufficiently smooth over the

intercsted range of & (k. k) and B (k. k). In
such cases (scc Refs, 1 and 4), the cross terms are
negligible and Eq. (14) can be reduced to

T ol @ = T ma @8 g8y - (15)

One can assume that there is some relationship
between the mechanical force and the turbulent force as

follows:

T =

172
fgr — Ge—;‘z\o with G_( Fggr )
mn

j —

where 4@ is the phase differcnce betwecn the
turbulent pressure and mechanical force. After multiplying
the above cquation by pf p% and taking the expected
value, it then follows that the coupling forcing terms can
be expressed as

P . 2 4 L —in®
Com=| .~ Db € (16)

y p— 1
= 2 _-icQ
= (Famy Tond €

This relationship is very important to have a fecdback
control system in the fields of random vibration and
acoustic radiation.

Numerical evalvation of the acoustic power, that is, the
evaluation of W, in Eq. (13), is extremcly time-
consuming for broadband random excitations. Ia the
following scction, an approximate method to derive
Wiungr 18 developed. The idea is similar to the one used
by Crandallf12) in his study on the problems of random

vibration.

2.2. Approximate solution

In order to obtain an approximation of Eq. (13), the
following assumptions, which are used in the asymptotic
modal analysis (AMA)[13] and the statistical energy analysis
(SEA)[14] of dynamic systems, are made in this work.

The first assumption is that the structural damping of
the platc is low enough to scparate the adjacent
vibrational modes in some degree. This assumption does
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not always mean omitting of all terms in the fourfold
modal summation except those for which m = ¢ and n = r.
However, for a plate under light fluid loading (such as
air) and resonant excitation, the effect of modal coupling
on acoustic power radiation is rot important, as already
pointed out by Keltie and Pengfl5}]. The second assumption
ts the white noise-like excitation with frequency band
Sw=wy— w,, which implies that the spectral density
functions of the forcing functions, F (@), Torme@)
and  Coml@), are slowly varying with respect to
frequency. And the modal acoustic impedance 2 ,un,,{ )
is slowly varying with respect to frequency rclated to
rapidly varying modal mobility function ¥, ()
especially near w=w,, .

With these assumptions, the diagonal terms of the
inteasgral W,,.,. where ¢ = m and r = n, can be

written as

W':m:mn z_% z | Yl ) | 2d(0x Re{zmnmn(wmn)

“

[ F s C@ad T Tl @ i) — cmm»( @ )
- C:nnmn( wmu]]}

~ DCRmumn(wmn)Fn(wmn)
493’7“)»:"

(17a)

where R_,..(@,.) is the modal radiation resistance
at resonant frequency .., &@{®,,) is the phase
difference between the two forcing functions, F (@) is

thc combined force spectrum at frequency w,,, defined as

Fo= Frpmy {0 mn) + Tl & )

_2\! anmn(wmn)fw(wmn) cos A QD (w,.,..)

and the result of
oy o«
I Yodad | dws [ 1 Vol @) | "do=1/26%000

was used.
For a square platc with the samc edge conditions

along all cdges, the modal degeneracy term W,

wher m=+n, must also be considered due to the cffect

of modal degeneracy:

W™ ——2E— Rel 2 mmn @) F o )} (17b)

400 sy

where

_— ‘[ —iAD
Fb_Frrmmx+ Tn»mm— ananmnmn e (l']b)

ine
- anmnTnmnm €
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In this case, ©,, and @, (m+#) have the same

resonant frequency «,,, .

The modal coupling terms can be also obtained by
repeating almost similar procedures as done with diagonal
terms. The coupling terms of the integral W,
representing modal cross-comrelation arising from the

elastic modes of w,% @, can be written as

«2
Woner™ "‘gﬁ Re{ Ll Vil @)@ * 2 e G} Yok @ )
[F gymnt Termn— Carmn— Crmer1}
= ‘—%2”.0 Re{ mer( wmn) qu( Cb',m,)Fc( wm)
s

[ K @yl @ ppns ) — K/ 0 s D1}
(17¢)

where the integral factor Kw/w,,,,7) is

2.

.1 (&0 W) — (O] ) + 1+ 7
"4 In[ 7 }

and Fe= Formt Tormn=(Forgr Tommn) 20~ 2
~ (F puumn Tor) 2€"*°
From Egs. (17b) and (17¢c), it can be found that the
imaginary parts of the acoustic impedance, X, can
contribute to the acoustic power radiation due to the
effects of modal coupling. It is known that X, lead
to virtual mass terms to be added to the plate mass.
However, according to Keltie and Peng, for a plate
under light fluid loading and resonant excitation, the
coupling contribution caused by the interactions of e¢lastic
modes is negligibly small. Broadband random excitation
means that many modes can be excited within the given
frequency band. Therefore it can be shown that these
coupling terms can produce little contribution to the
radiated acoustic power
Substituting Egs. (17) into Eq. (12), the approximate solution
for the acoustic power including modal coupling terms becomes

W= Wyt Wt Bam 33 Wt 3 P (1)

@y F G

where W, is the acoustic power produced by the
diagonal terms, W, is the acoustic power produced by

the degeneracy terms and W, is the acoustic power

produced by the coupling terms. The summation over the
mode numbers m and n (or q and r) is confined within

the range of excitation frequency, @) < @n,< wp. It is
noted that the property of diagonal symmetry of the
acoustic impedance, 2., = Z4my i used in evaluating
the acoustic power.

For comparison, the approximate acoustic power obtained
by using Rayleigh integral in a stationary fluid medium[2]
is also calculated without considering the coupling terms

as follows:

W= Wl + Wz (19)
whete

W= 1% & Fiom) f,0m(x5)
Re{F™ (B nal ke, k) Gk, by, w)}}drdy,

W= & Filon) [, @ m,5)

4
R(F (B b, k)G, by, 0)))dixdy.

Here F~! denotes the inverse wavenumber Fourier
transform, Green function in a stationary fluid medium is

given as

Glhky, by, 0)=
WE=-B-B) B2+ B
(NE+E—1D) L P <B4+ 8

II1. Modal Coupling due to Moving Fluid and
Random Forces

3.1. Modal Coupling Impedance in a Moving
Fluid Medium

The integral for the modal coupling impedance

Zomg{@) was expressed in Eq. (9). The analysis is

limited to a simply supported rectangular plate but can be

expanded to a plate with arbitrary boundary conditions.

The natural frequencies and mode shapes for a simply

supported rectangular plate are given as

@y =(Df 0y ”2( k?u + ki) =(Dfpy Uzkim (20)
D 2, =247 sink, xsink,y

where k,=mn/l. k,=nafl, and A=1[], . the
modal wavenumber shape function for a simply supported
rectangular plate is given as

Dl lee, By
= e 1= (=" F 1~ (=" *}
ket (#— K= D)

1)



In a stationary fluid medinm (M = 0), the constant
frequency locus of the acoustic and structural
wavenumber plots a circle with radius ¥ and centered at
the origin of the wavenumber space. But for a subsonic
flow (0<M<1), the constant frequency locus plots an
ellipse as shown in Figure 2. For subsonic flow, the
radiation behavior grows from a circle at M = 0 to a
ellipse in the regions of O<M<1, Thus some acoustically
slow modes in the negative wavenumber region at M =
0 can be strongly radiant due to flow effect and some
acoustically fast modes in the positive wavenumber
region at M = 0 can, in some degree, be weekly radiant
due 1o flow effect.

Previous papers{4-7} have studied the case of a
stationary acoustic medium. Chang and Leehey[8] have
developed thc new integration scheme for the modal
coupling impedance in a subsonic flow using a unique
Gaussian quadrature with reusable abscissas.

&
| —Subsonic flow
-

N

NN

Transformation

Radiation circle

Figure 2. Constam frequency loci in original (%) and transf-
ormed (X) wavenumber space with lattice points.

In this paper, an efficient method is suggested to
compute the modal coupling impedance in a moving
fluid medium. The only singularity in the integrands of
Eq. (9 is the square root singularity when
C'=(lLH— K- kf,)m=l}. An averaged Green function
developed by Williams and Maynard(16] is used. To apply
the above technique, a radiation ellipse must be transformed

into a circle using the following transformation:
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K=k{\1-M* K, ="Mk, + MK;K, =k,

With some arrangements and using the averaged Green
function, modal coupling impedance can be cxpressed as
the following summation form:

z’”ﬂqf ( w) =

K(A EQZ ¢ 3,
T go s=2§,,, (22}

() V(5. H D05, 0 G5, 1)

where  @,.(s, is mode sensitivity function at
(sa K, tan K) discretized in the transformed wavenumber
space (K,, K,). Here

M sAK
—j- M [38r
als) 1-M2( F3 M] and

QK- KD - (K- K1)
KI-x}
2 1

(?"(.s',!) =

where

Kl = Kg‘ AK/2, Kz = Ko+ A K[2‘
Ko=V s+ oK, aK=2x/L
and L is the aperture length.
To obtain an accurate approximation for Eq. (22), the

increment 4K and the limit of summation, s, and
finay, must be defined. When K =AK = 2x/L, only one

lattice point in waverumber space falls within the
radiation circle (Figure 2), The accuracy will be
improved by increasing the number of the lattice point
within X, where K cquals NAK. Then the required

aperture length will be L = 27/AK =22N&V | — M/ w
and that must be larger than the size of the plate. The
limit of summation, K . =5q.« 4K, must be greater
than the maximum of
Kol = [ 1= M+ iV T— 052+ B, K,
and K. Ko =2max(k,,, K, K) and N = 50 is

recommended in this paper. Then the limit of summation,

Smax O Zmae, becomes K. /oK.

Figures 3 and 4 show the computed modal radiation
impedance, z;;; and 2z, for a simply supported
square plate. As shown in Figure 3, the results for the
modal radiation resistance computed by using the
proposed mcthod coincide with the exact values
computed by Wallace[6] and those by Chang and
Leehey[8]. Also it can be noticed from Figure 3 that the
computations by Davies[4] and Leibowitz[5] using delta
function approximations arc very poor, except in the

regions of very low and very high frequencies.
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Figure 3. The modal radiation resistance for a square plate at
M=0

As shown in Figure 4, with increasing flow speed, the
frequency showing the peaks of wmodal radiation
impedance moves toward the low frequency while the
peak values increase. This is due to the fact that some
acoustically slow modes can become strongly radiant due
to flow effect. At high frequency, the resistances
approach unity and the reactances approach zero. Unlike
the high-frequency results, the low-frequency data depend
more upon Mach number. In contrast to the radiation
resistances, the radiation reactances show a somewhat
unexpected behavior at low-frequency region. Essentially
the reactance becomes very large for nonzero Mach
number. Chang and Leehey have also observed that
phenomenon about the radiation veactances. They
observed that subsonic flow has a greater effect on
radiation reactance (e.g. added mass) than on radiation
resistance (e.g. radiation damping). Although the effect of
mode order number is not shown here, the effect of flow

on radiation impedance increases as the order of the

mode (m,n) increases.

3
A
1
|
2+ !
!
Ry !
1
1+ |
1
1
.-‘; .
0 -
0
K ke
(a) Radiation resistance
3
IR 0.5
= ! M=0.
T
SR M=02
» B
VN \ M=0
/‘5171: \ \‘ /
i AN
N \ R NN
" N P N
\.—. __.v-"’ ™ \\
0 L . L =
0 0.5 1 1.5 2
K/ Knn

(b) Radiation reactance

Figure 4. The modal radiation impedance of {7,1) mode for a
square plate at various Mach numbers.

3.2. Coupling of a Structural Mode with
Turbulence
In onder to evaluate the acoustic radiation in a moving fluid
medium, one needs to know 7T,,,(w}, the coefficients
of the modal coupling between a structural mode and the
TBL pressure field. Modeling of a turbulent wall pressure
spectrum acting on the plate as a forcing term has been
a research subject for many years, but there is no overall
agreement among these medels regarding the spectrum in
the low-wavenumber region. In this study, the Chase
model[9,10) is chosen. The wavenumber-frequency spectrum
suggested by Chase is

8 ke, by, @) = 20’3 v A cuklKis® + e+ BDKT)
23)
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where

o uk,

Ki=(—5 =V + B (0,072, i=M. T,

u,=0.6u. is the convective velocity, p.==0.035uc is
the friction, §=64, is the boundary layer layer thickmess,
8, is the displacement thickness (It is selected in this work
as approximately 4.2mm in aeronautical environments
when Mach number number is in the range of from 0.3

to 0.7), k=3, ch=0.014, cuh=0.466, b6r=0.378
and b,=0.758. In figure 5. the typical TBL spectra of Chase
model and Corcos modal are shown. Also the modao
wavenumber sensitivity function | ®,,(k,. &) ] % are
superimposed on the plot of TBL
Sk, by, 0)/S{w) where S,(w) is the point pressure
spectrum per vV Hz given as

S @) =27ra,00 0" [ruar {1+ £2ak) + rro73(1 + 2P

spectrum

1E0
1E /%mﬁ
::i ™S, (k,0,0)/8,(@

Corcos

T

Chase]|

S —

1E-6
1E-7
1E-8
1E-9 .
-1 0 1 2 3
ke/ke

Figure 5. Typical characteristics of wavenumber sensitivity
function | @ ks, 0) | 2 a3 superimposed on
the wavenumber spectrum
S‘,(k,,[}, @)/ S(w) for (7, 1) mode of a square
plate and St = @,,, 0y f U= 0.2

whete ai=1+4+(k.bd) %, i=M, T, k;=wflu, is the
convective wavenumber, rr=0.389, ry=1-rr, a=0.766. and
£ =0.176. The mode sensitivity function of a plate has a
high peak at modal wavenumber k.. . Since the structural
wave speed and the flow speed are usually of much closer
orders of magnitude in most aeronautical environments,
the full wavenumber spectrum of ithe TBL function can
excite the structural mode. Therefore the coupling of a
structural mode and TBL pressure field should be
computed after considering the effect of full wavenumber
region. Using Chase model, one can estitmate the modal
coupling coefficients T, (@) using (wo-dimensional
Gaussian quadrature. The normalized coupling coefficients,
Jone{ @), is defined as
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_ Top(@)
Jonerk )-W 29)

In Figure 6. the coupling coefficients for a simply
supported rectangular plate at various mode order
numbers (m,n) are shown using both Chase model and
Corcos model, for comparison purpose. The comparison
says that the contribution to the coupling by the
low-wavenumber region becomes dominant in aeronautical
environments as frequency increases and flow speed
decreases. The coupling due to model degeneracy is not

significant. This fact implies that the cross terms T,

where g+m or r<pn, can be neglected (see Eq.(15)).

Jmnqr
1E-2
1E-3 | Corcos(7,1) s
1E-4 1 (7Ci1)ase
1E-5

|
1E-6 | (9,1) degeneracy
IE7 ) —@1L7)
1E-8 . —(13,1,1,13)
1E9 | —
lE-]()!
1E-11
1E-12 s s s =

0.2 0.4 0.6 0.8 1
Ko (ke

Figure 6. The coupling by TBL wavenumber spectrom for a
square plate at various mode order numbers.

3.3. Coupling of Structural Mode with
Mechanical Forces

Mechanical point forces are considered in this work.

For stationary random multiple point forces, the modal

force f,. (@) is given as

M
Sl @)= Lﬂx. Y. D o %, y)dltdy= Z‘.IFa(w)‘i‘i' m( Xas ¥o)
(25)

where F,(w) is the ¢-th point force spectrum and N,
is the number of imput point forces. Thus F,,.. (@} is
found to be

anqr(w) = g@ »m(xa, ya)® qr(x,g» yﬁ)saﬂ(w) (26)

where S fw) is the one-sided spectral density

function of the a-th and £-th point forces defined by
S w) = %1_1};10% Flw, T}Fy(w, T). In case of multiple

point forces possessing identical bandlimited white noise
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spectra, the spectral density can be written as

S.(wy={ S{o),o<w<w

0, otherwise

Sd{m}atﬁ= { ?'Sf(fﬂ)’ N <O<W;

0, otherwise

where 7 is the mechanical forces' correlation coefficient
(—1<r<1). Using the same procedure as the case of
the point forces, the modal force and the coupling
coefficient of the multiple area forces can be easily
obtained.

IV. Numerical Re;u!ts of Acoustic Power
Radiation

Several numerical problems were tested to illustrate the
nature of the sound radiation from a plate excited by
turbulence or mechanical forces. A square plate with
dimensions of {,=/,—0.8m, thickness of J==3mm,
structural loss factor »=0.004, mass density of 7700kg
jm*, poisson’s ratio of »-0.28, and Young’s modulus of
E=195x10""N/m’, was prepared. The plate is simply
supported and excited in air medium, that has density of
o=121kg/m* and sound speed of ¢-343mfsec. The
acoustic-coincidence frequency w,. is approximately 4kHz in

a stationary fluid medium,

Table 1. Center frequencies and numbers of excited modes of
one-third octave excitation band.

center frequency  wavenumber ratio  number of excited

(Hz) (/) modes
500 0.349 7
630 0.391 8
800 0.439 1]

1000 0.492 17
1250 0.553 20
1600 0.620 23
2000 0.696 32
2500 0.780 39
3150 0.876 49
4000 0.983 62

Approximate solutions for acoustic power integrated
over one third octave band A @ are presented. The
center frequencies and the number of excited modes are
summarized in Table 1. All the predictions were done in
the frequencies above the convective-coincidence frequency

w. and below the acoustic-coincidence frequency w.. -
When %/k,=]1, convective coincidence occurs at that

frequency, where £,={pw’/D}'"* is the structural free
wavenumber at the center frequency of the one third
octave band. The relationship between .. and @, is

given as

&=(%)2z0.35w @8)

W

where M is the Mach number. When M=0.5 and
wa.=4KHz, @ becomes 360Hz. In order to illustrate
the effect of flow speed on the radiation characteristics,
the results for radiated acoustic power and frequency-
average radiation efficiency are presented at various flow
speeds. Frequency-average radiation efficiency can be
obtained as

o= 0, WlocE, 29

where the approximate solution for the vibration

energy is given by

Jl“‘E;‘:v= 2”Fa(wmn) J’Psf)fﬂm .

For compatison, the average radiation efficiency obtained
by using both Rayleigh integral and modal expansion
technique in a stationary fluid medium (in that case
T mn(@)=0) ate plotted in Figure 7. Both results are

very much identical as expected.

In Figure 8, the acoustic powers and the average
radiation efficiencies are plotted when a mechanical point
force with white noise spectrum excites at the center point.
The acoustic power caused by the interactions of elastic
modes is negligibly small within the given band
(coupling powerftotal power<10” in most cases), although
it is not shown here. Figure 8 shows that moving fluid
has a great effect on the characteristics of acoustic radiation.
As flow speed increases, the acoustic-coincidence frequency
decreases. When M=05, the acoustic-coincidence frequency
occurs at about k/k,=0.5, dve to the effect of moving
fluid, As expected, it is because the peaks of the
radiation resistance move toward the lower frequency as
flow speed increases.

In Figure 9, the acoustic powers as varying the flow
speed are plotted when the plate is excited by turbulent
pressure field. That is the case when there are no mechanical

forces  { Fypmn (@) =0). At frequencies well below acoustic
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coincidence, the acoustic power is nearly constant. At
frequencies near acoustic coincidence, a resonant type peak is
observed (Alk;=0.5atM=0.5 and ¥ k~0.6 atM=0.4).
In contrast to the case of mechanical excitation, the
effect of flow speed on the radiation characteristics is not
significant at  frequencies well above convective
coincidence. This means that as flow speed increases the
acoustic power uniformly increases independent of
frequency. The reason is that some acoustically slow
modes can become strongly radiant due to flow effect
but the amplitude of the TBL wavenumber spectrum in
low-wavenumber region is so small that the product of the
radiation tesistance R, and the turbulent forcing

function T, does not much increase due to the flow
effect, as compared to the case of mechanical excitation
F pumn with white-noise spectrutm.

1EL

1E¢
N
(o}

using Rayleigh integr
1E-1
[ ™~ using modal expansion
1E-2 . : s s
0.2 04 0.6 0.8 1 1.2
kfks

Figure 7. Comparison of radiation efficiencies obtained by
using Rayleigh integral and using modal expansion
atM =0

1E}
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(a) One-third octave band acoustic powers
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Figure 8. Acoustic powers and radiation efficiencies due to
Mach number for point force excitation at the

plate center (  j— (wy=10).
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Figure 9. One-third octave band acoustic powers due to Mach
number for turbulent excitation (F,,.. (w) =0}

V. Conclusion

A theoretical formulation for computing acoustic power
radiation from a rectangular plate in an infinite rigid
baffle exposed to flow turbulence and mechanical forces
in a uniform subsonic flow has been presented. The
approximate solution for the acoustic power radiated from
a plate excited by random forces was obtained assuming
light fluid loading on the plate and low structural
damping. In order to numerically predict acoustic
radiation, the modal acoustic impedance,  z,,u.{ @),
between a structural mode and acoustic pressure and the
modal coupling coefficients, Tm(w), between a
structural mode and flow turbulence were evaluated in a
subsonic flow field. An efficient method to evaluate the
modal acoustic impedance was suggested by using
averaged Green function.
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Numerical predictions for the acoustic power radiation
from a simply supported rectangular plate excited by
turbulent pressure field and random mechanical forces
were made in a subsonic flow field. It was shown that
moving fluid gives more significant effect on radiation
characteristics due to mechanical force excitation than
due to wrbulent excitation. For a broadband excitation
which means that many modes are involved in plate
response, the reasonable solution for the acoustic power
radiated from a plate with random forces such as flow
turbulence and mechanical forces in a subsonic flow field
was obtained by considering the resonant modes only.

Further studies can be followed to reduce the acoustic
power radiation from a plate due to turbulent pressure
fluctuations. The simplified formulation can be used to
design mechanical input forces to reduce the acoustic
power radiation from a plate. In practical situation, it
will be difficult to obtain the refationship between input
forces and flow turbulence.
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