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Broadband Acoustic Power Radiation from a Finite Plate

Excited by Random Forces in a Subsonic Flow Field

*Hyo-Keun Lee

Abstract

This paper presents a simplified analytical formulation for computing acoustic power radi건ion from a rectangular plate 

exposed to random forces such as turbulent boundary layer pressure fluctuations and arbitrary mechanical force in a 
subsonic flow field. The expression for the acoustic power is derived using modal expansion method and light fluid 

loading is assumed on the plate. In order to simplify the formulation for acoustic power due to combined excitations of 
mechanical forces and turbulent pressures, it is assumed that the structural damping of the plate is small and excitations 

are broadband random forces having frequency spectra above the convective coincidence. Under these assumptions, an 

approximate solution for the broadband acoustic power radiation from a plate excited by both turbulent pressures and 

arbitrary mechanical forces is obtained and evaluated considering the effect of modal coupling on the radiated acoustic 
power. An efficient method is also suggested to compute modal acoustic impedance in a moving fluid medium by using 

averaged Green function.

I. Introduction

Many researchers have focused their attention on the 

acoustic power radiation from finite plates excited by 

turbulent boundary layer (TBL) pressure only[l], or by 
random mechanical forces o미y in a stationary fluid 
medium [2], or by time-dependent broadband mechanical 

forces only in a moving fluid medium[3]. However there 
have been no attempts to formulate the acoustic radiation 
from a plate due to the excitations by both flow 
turbulence and mechanical forces including the effect of 
moving fluid and modal coupling. This paper presents a 
simplified analytical formulation for the acoustic power 

radiation from a rectangular plate in an infinite rigid baffle 

placed in a subsonic flow field excited by both turbulent 
boundary layer pressure fluctuations 건nd random 
mechanical forces. This analysis gives the possibility of 

reducing the acoustic power level by applying auxiliary 

mechanical forces. In order to numerically predict the 
acoustic radiation, precise knowledge both about the force 

coupling effects between structural mode and the two 
forcing terms (flow turbulence and mechanical forces) 
and about the acoustic coupling effects between structural 
mode and acoustic fluid is very important.

The computation of modal acoustic impedance, which 

describes the interaction of a structural mode with

Agency for Defense Development

Manuscripit Received : January 14, 2000. 

acoustic medium, has received considerable attention. The 

analysis is mostly based on the use of an in vacuo modal 

expansion for the vibration field, acoustic pressure and 

forcing functions. Many authors[4-7] have studied modal 
acoustic impedance of a rectangular plate positioned in a 
stationary fluid medium. Chang and Leehey[8] calculated 

the modal acoustic impedance in the presence of a moving 
fluid, using a modified Chebyshev quadrature. In this work, 
an alternative approach is suggested to efficiently 
compute the modal coupling impedance in a moving 

fluid medium, by using averaged Green function in 
wavenumber domain. The coupling of a structural mode 

with TBL pressure fluctuations is also studied. Chase 

model[9,10] was used for the TBL pressure fluctuations. 

It is known that Chase model more accurately describes 

low-wavenumber spectrum than Corcos formulation[ll] 
does, even it shows high peaks at the convective 

wavenumber (high-wavenumber) region. In this study, the 
formulation and evaluation of auto- and cross-modal 

coupling coefficients between structural mode and flow 
turbulence are presented. Cross-modal coupling between 
modal forcing terms plays an important role in the 

presence of high structural damping and structural modal 
degeneracy when fluid loading is light.

Numerical evaluation of the acoustic power is extremely 

time-consuming for broadband random excitations. In 
order to obtain an approximate solution, it is assumed 

that the plate structural damping is low and fluid loading 
is light. Under these assumptions, the 죠 pproximate 
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solution of the acoustic power can be easily obtained 
and evaluated by using the Chase mod이 of turbulent 
wavenumber-frequency spectrum and the types of 

arbitrary mechanic시 forces in a moving fluid medium. 
This approach can be used to design auxiliary mechanical 
forces to reduce the acoustic power radiation from a 

plate due to turbulent pressure fluctuations.

II. Theoretical Analysis of Acoustic Power 
Radiation

2.1. Exact sol니tion
Consider a thin rectangular plate of length lx and 

width ly in an infinite rigid baffle excited by TBL 

pressure fluctuations and mechanical forces in the presence 
of a uniform subsonic flow, as shown in Figure 1. The 

flow is in the region of z 그。and moves toward the 
positive x-direction. It is assumed that neither the plate 

vibration nor the acoustic pressure field affect the forcing 

terms. For simplicity, the effects of the back reaction of 

the radiated pressure on the plate due to the medium 
such as air will be neglected and a constant structural 

loss factor is assumed.

Figure 1. Schematic view of plate model.

The vibration equation for the plate velocity 

v (x, y, to) under the actions of TBL pressure 

pt(x, yf <z>) and mechanical force J(x, y, at) with the use 

of e~,wt time dependence is

ZXl-汤)▽七(尤,-ps<w2p (x,y.ty) =
(1)

一 ia)[Axt yt <w) 一 力(先,y, at)]

where damping is modeled as a constant structural 

loss factor 7). D is the flexural rigidity, ps is the mass 

per unit area of the plate, and o) is the circular 

frequency. If viscous damping is assumed, the damping 

term will be cs v (x, y, o)) in Eq. (1) where cs is the 

viscous damping coefficient per unit area.
Expanding the plate velocity, mechanical force and 

turbulent pressure with the plate eigenfunctions 

0mn(xty) gives

u(X,y,a))= S V s(tw)0 m„(xt乂), (2a)
tn, n

S fmn( Q 0 mn(x, y,), (2b)
tn, n

Pt(x, y, co) = £力二施)0呃3乂)， (2c)
m, n

where is the modal velocity amplitude of

the (m,n) mode and so on. The orthogonal property of 
the eigenfunctions can be expressed as

f L 0 mn(x, y,) 0 qr(x, y)dxdy= 3^ Snr 
0 j 0 (3)

where 3政 and §nr denote the Kronecker delta functions.

After substituting Eq. (2) into Eq. (1) and utilizing the 
orthonormal properties of the eigenfunctions, the modal 

equation for the plate velocity is easily obtained as

=匕(沥一力，”(以 (4)

where Ym„( (y) is the modal mobility function of the 

plate defined as

匕成(仞)=一讪/〔Ps(成n _展_沥法切)]

and o)mn is the (w,n)th undamped natural frequency.

The wave equation for the acoustic pressure p(x,y,z,f) 
in a uniform flow field is given as

▽ 勺(払 y, m ( 으 十始 으) P(xy y, z,t) = Q (5)

where c is the sound speed in fluid and um is the 

free stream velocity in the x-direction. The acoustic 
pressure must satisfy the following boundary condition at 

the outer edge of the boundary layer:

-*絲戶어" = -。(으 + “8 으 ) 板x, y, t) (6)

where p(xt y, 8, f) is the acoustic pressure at 

(x, y, 8 is the thickness of the boundary layer, p 

is the density of the acoustic medium and w(x,y,t) is the 
plate displacement. When the boundary layer is much
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thinner than one wavelength of the acoustic wave, i.e., 

5< <A, it can be assumed that p(x, y,(5, y,0,t)

in Eq. (6). The modal acoustic pressure pmn(a)) at the 

plate surface can be defined as

力E(沥=Jo Jo p(xt y, 0,69)0 m„(x, y, )dxdy, (7) 

where p(x, yt cy, T) and y *(x,y, a), T) are the 

T-truncated ensembles of the surface acoustic pressure 

and velocity and T is the time interval of the stationary 
random process. Substituting Eqs. (2), (4) and (8) into 

Eq. (11) and utilizing the orthonormal properties of the 
eigenfunctions, the exact expression for the acoustic 

power is found to be

After some rearrangement, the relationships between 

the modal acoustic pressure and the modal velocity can 
be derived as

Pmn( <W)= PC S ZmnQr( CO) U 从曲 (8)
Q, r

where zmnqi{ a?) is a modal acoustic impedance, 

connecting the (m,n) modal acoustic pressure and the 
(q,F) modal velocity, defined as 

zmnQM =R mnqr(<W)- iXmn从曲

=飞春 J_8 知,，")彷，，(知,佑，)

0 e(知,k^dkxdky .
(9)

where k=a)/c is the acoustic wavenumber,

\ — MkJK, M= c is the Mach number, and 

(2{kx,kyt tw) is Green ftmction[8] in a moving acoustic 

medium defined as

。(知,知,G =[妒 一(1 一 财)盛 一 2kMkx-履]-1/2

W=、£ wmnqr , (12)
m,n q, r

"사 =券쩌J； 匕屜)X

[户、””辑(O)+ Tq-ymn( -。"”携(以)-C推龙"(

(13)

where Fqrmn{a))~ 晚⑵7)£片(0, 7)丿；7),

TQrmn{a))~ 耳m(2/T)力>(〃，T)或”(a), T). and

CQrmn(a))~ Km(2/T)4r((z), T)p^n(a), 7). Here,

FQrmn( <y) is the one-sided modal spectral density 

function of the mechanical forces between (q,r) and 

(m,n) modes, TQrm)^a)) is the modal spectral density 

function of turbulent pressure fields, and Cqrmr^ <w) is 

the modal coupling forcing term between the mechanical 
force and the turbulent pressure. Notice that the 

integration range has been changed from 0 to positive 

infinity because of the definitions of one-sided spectra of 
the forcing functions.

It is assumed that the force fields are stationary and 

statistically homogeneous. Then, FQrmt^a)) is easily

Also, in Eq. (9),

窃 0 y)e~t(kl x+k'y}dxdy (10)

is the shape function for the (q, r) mode 0 二”아知 k) 

is the complex conjugate of 窃 ky)

If the modal pressure is expressed in terms of the 
modal velocities, the acoustic power can be easily 

calculated. The acoustic power radiated from a plate 
under the action of stationary random forces is given by

y，命"血

= 」叫麒厂抑"

(x, yt 3、T))dxdyda) 

(H) 

obtained. TQrmn( o>) can be calculated using the definitions 

of the wavenumber-frequency Fourier transformation, 
given in Eq. (10), as follow모

TQr7nn(a)) = Hmyfa)fT)0 qr{x, y, )dxdy 

f/；(先,y,a),T)(Z)mn(x, t, )dxdy 
J A

[ 广8 广8
=W切J_」_8 &(知，知，3'您，(知,妇

窃 mn(kX,ky)dkxdky

(14)

where Sp(kxt kyt <w), is the wavenumber-frequency 

spectral density function of the TBL pressure field. 
However, it is difficult to evaluate the coupling forcing 

terms CQrmn(a)), because the modal turbulent pressure 

况机(Q>) can not be defined analytically and the 

wavenumber-frequency spectrum Sp(kxtky, <w) of TBL 
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pressure field can be obtained only from experimental 
observations.

In order to obtain the relationship between the spectra 

of the mechanic시 force and the turbulent pressure, only 

the acoustic response well above convective-coincidence 

frequency (a)cc= ui(pJD)x,2) for turbulent excitation is 

assumed to be of interest. Then the wavenumber spectrum of 

Sp(kXl kyt <y) becomes sufficiently smooth over the 

interested range of 窃"(知，知)and 禱(履，知)•血 

such cases (see Refs. 1 and 4), the cross terms are 

negligible and Eq. (14) can be reduced to

Tgrmn(a))= . (15)

One can assume that there is some relationship 

between the mechanical force and the turbulent force as 
follows:

4- = GeTE 可讪 gT*2꼬-)応

Pmn \ 丄 mnmn /

where A 0 is the phase difference between the 

turbulent pressure and mechanical force. After multiplying 

the above equation by PmnPmn and taking the expected 

value, it then follows that the coupling forcing terms can 

be expressed as

아L (岑쓴) 期-^/4>况0'“° (16)

=(F T )i/2\工 Q가"‘‘ h mnmn/ e

This relationship is very important to have a feedback 
control system in the fields of random vibration and 
acoustic radiation.

Numerical evaluation of the acoustic power, that is, the 

evaluation of Wmn(ir in Eq. (13), is extrem이y time- 

consuming for broadband random excitations. In the 
flowing section, an approximate method to derive 

Wmntjr is developed. The idea is similar to the one used 

by Crandall[I2] in his study on the problems of random 
vibration.

2.2. Approximate solution
In order to obtain an approximation of Eq. (13), the 

following assumptions, which are used in the asymptotic 
modal analysis (AMA)[13] and the statistical energy analysis 

(SEA) [14] of dynamic systems, are made in this work.
The first assumption is that the structural damping of 

the plate is low enough to separate the adjacent 

vibrational modes in some degree. This assumption does

not always mean omitting of all terms in the fourfold 
modal summation except those for which m = q and n = r. 

However, for a plate under light fluid loading (such as 

air) and resonant excitation, the effect of modal coupling 
on acoustic power radiation is not important, as already 

pointed out by Keltic and Peng[15]. The second assumption 

is the white noise-like excitation with frequency band 

A(y= a)2~ which implies that the spectral density 

functions of the forcing functions, Fqrmn{a))y Tarrn^o)) 

and are slowly varying with respect to

frequency. And the modal acoustic impedance zmTUir( o)) 

is slowly varying with respect to frequency related to 

rapidly varying modal mobility function Ym„( o)) 

especially near a)~ a)mn .

With these assumptions, the diagonal terms of the 

inteasgral Wmnqr, where q = m and r = n, can be 

written as 

0為g 저: 奇f J，I 匕加(G I 2da)y<Re{zmnmn(a)mn)

@삿?카/g(
4於％m

(17a)

where 7?m„mn(<ymn) is the modal radiation resistance 

at resonant frequency a)mn, △ 0(勿响)is the phase 

difference between the two forcing functions, Fa(<ym„) is 

the combined force spectrum at frequency a)m„ defined as

Fa — P'mnmn T-' mnm^~ mn)

一 片小小(也小)：匚COS A0((Wm„)

and the result of
广a>2 广8
J皿 I Ymn(a)) I 2da)^ Jo I 匕湖(勿) I 勺0)=찌2而a)mn 

was used.
For a square plate with the same edge conditions 

along all edges, the modal degeneracy term Wmnmn, 

wher m=^n, must also be considered due to the effect 

of modal degeneracy:

就E” 저‘ w爲%— z m次(a) m) F b( a) g)} (17b)

where

IA0 (17b)
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In this case, 0 mn and 丰刀)have the same

resonant frequency a)mn .

The modal coupling tenns can be also obtained by 
repeating almost similar procedures as done with diagonal 

terms. The coupling terms of the integral Wmnqr, 

representing modal cross-correlation arising from the 

elastic modes of a)qr^a)mni can be written as

/ 广 (하 2
0%『券庇 Js YMd<0 - ^mnqr (q“湖)乙，(仲，初) 

[Fqg* + Tqnwn — ^qrmn — ^mnqr^\

[I(co2/(omnt ri)~I{a)Ja)mn, 〃)]} 
(17c)

where the integral factor I(a)/a)mn , if) is

Tf / X 1 , f (<w/<wm„)2~l 1
I{(D/a)mnt7})=京叫------------ ]

.1,( (a)la)mt)4 — (<w/cww„)2 +1+ 72
_ 侦 叫------------쥬------------

and F° = FQrm„+ Tqrmn— (Fqr„r T1/2e_ ,a ° 
一 (FggTg)%"。

From Eqs. (17b) and (17c), it can be found that the 

imaginary parts of the acoustic impedance, XmnQr> can 

contribute to the acoustic power radiation due to the 

effects of modal coupling. It is known that XmnQr lead 

to virtual mass terms to be added to the plate mass.
However, according to Keltie and Peng, for a plate 

under light fluid loading and resonant excitation, the 
coupling contribution caused by the interactions of elastic 

modes is ne이igibly small. Broadband random excitation 

means that many modes can be excited within the given 
frequency band. Therefore it can be shown that these 

coupling terms can produce little contribution to the 

radiated acoustic power
Substituting Eqs. (17) into Eq. (12), the approximate solution 

for the acoustic power including modal coupling terms becomes

带=府+爾+爾=党网党就””，， （18）
m, n m, n <

아“丰 3*

+荒爻明，々
m, n q, r

where % is the acoustic power produced by the 

diagonal terms, 義 is the acoustic power produced by 

the degeneracy terms and % is the acoustic power 

produced by the coupling terms. The summation over the 
mode numbers m and n (or q and r) is confined within 

the range of excitation frequency, a)i < a)m„< a)2- It is 

noted that the property of diagonal symmetry of the 

acoustic impedance, zmnqr— zqrmn, is used in evaluating 

the acoustic power.
For comparison, the approximate acoustic power obtained 

by using Rayleigh integral in a stationary fluid medium[2] 

is also calculated without considering the coupling terms 

as follows:

(19)

where

带= 项을冬 爻 Fa( 勿爲 f 0 mn(xr y)
4偽 m.n J A

」如{厂1{ 0 m„{kx,k^G{kx,kyta))}}dxdy,

% =焉爲政心丄0，”3

Re{F~x{ 0 m^kx,k^{kx,kyta))}\dxdy.

Here F~l denotes the inverse wavenumber Fourier 

transform. Green function in a stationary fluid medium is 

given as

G(kXiky, 0)) = ___________
I 시 启 一 痿一 属)「EM混* \
\ 시 感+威一罗) T, 启<史+履 丿

III. Modal Coupling due to Moving Fluid and 
Random Forces

3.1. Modal Coupling Impedance in a Moving 
디니id Medium

The integral for the modal coupling impedance 

zmnQr( aj) was expressed in Eq. (9). The analysis is 

limited to a simply supported rectangular plate but can be 
expanded to a plate with arbitrary boundary conditions. 
The natural frequencies and mode shapes for a simply 

supported rectangular plate are given as

f = (D/ s)니g + 屡) = (Dip) 欧氣 

0 mnix, y) = 2A~1/2 sin左点sink„y
(20)

where km=mn!lx , kn= nn/ly and A = lxly . the 

modal wavenumber shape function for a simply supported 

rectangular plate is given as

_9，, .-1/2 口一(-I)’％—'”』心.一(—
- 사아1膈0 ( 2 一 r2w 护 _ 妒)

\ Km Kx' \Kn Ky'

(21)
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In a stationary fluid medium (M 그 0), the constant 
frequency locus of the acoustic and structural 

wavenumber plots a circle with radius k and centered at 
the origin of the wavenumber space. But for a subsonic 
flow (0<Af<l), the constant frequency locus plots an 

ellipse as shown in Figure 2. For subsonic flow, the 

radiation behavior grows from a circle at Af = 0 to a 
ellipse in the regions of 0<Af<l. Thus some acoustically 

slow modes in the negative wavenumber region at M = 
0 can be strongly radiant due to flow effect and some 

acoustically fast modes in the positive wavenumber 
region at A/ = 0 can, in some degree, be weekly radiant 

due to flow effect.
Previous papers[4-7] have studied the case of a 

stationary acoustic medium. Chang and Leehey[8] have 
developed the new integration scheme for the modal 
coupling impedance in a subsonic flow using a unique 

Gaussian quadrature with reusable abscissas.

K = k/Vl-M2;Kx = y!\-M2kx + MK- Ky=ky

With some arrangements and using the averaged Green 
function, modal coupling impedance can be expressed as 
the following summation form:

礼早

/(S)0&(S, f)饥「(S, £)C(S,

2 
S=〜Sg (22)

where ll>mn(st t) is mode sensitivity function at 

discretized in the transformed wavenumber 

space (Kx, Ky). Here

a(s) = 1------------- z-
1 - M 2

仁으J"
I K )and

石(s t} - 2[(厂_ 幻w-
K；- K；

Figure 2. Constant frequency loci in original (ft) and transf­
ormed (K) wavenumber space with lattice points.

In this paper, an efficient method is suggested to 

compute the modal coupling impedance in a moving 
fluid medium. The only singularity in the integrands of 

Eq. (9) is the square root singularity when 

C t = (“2為2_ 履_ 扈)U2 = 0 An averaged Green function 

developed by Williams and Maynard[16] is used. To apply 

the above technique, a radiation ellipse must be transformed 
into a cir이e using the following transformation:

where

Ko = △ K, △ K= ML
and L is the aperture length.

To obtain an accurate approximation for Eq. (22), the 

incrementand the limit of summation, and 

fmax，must be defined. When K 7\K = 2 兀/£, only one 

lattice point in wavenumber space falls within the 
radiation circle (Figure 2). The accuracy will be 

improved by increasing the number of the lattice point 
within K, where K equals NAK. Then the required 

aperture length will be L = 2?디£\K = 2kNcJ 1 — 

and that must be larger than the size of the plate. The 

limit of summation, — A/f, must be greater 

than the maximum of

Kmn{ = [ (kJl-M2 + Mk/'ll-M2)2 + 履]!/2), K” 

and K. —2 max(^mn> K) and N = 50 is 

recommended in this paper. Then the limit of summation, 

Smax S' "nax， becomes K^l^K.

Figures 3 and 4 show the computed modal radiation 

impedance, and z7171, for a simply supported 

square plate. As shown in Figure 3, the results for the 

modal radiation resistance computed by using the 
proposed method coincide with the exact values 
computed by Wallace[6] and those by Chang and 

Leehey[8]. Also it can be noticed from Figure 3 that the 
computations by Davies[4] and Leibowitz[5] using delta 
function approximations are very poor, except in the 
regions of very low and very high frequencies.
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(a) (1,1) mode

on radiation impedance increases as the order of the 

mode (m,n) increases.

(b) (7,1) mode

Figure 3. The modal radiation resistance for a square plate at 
Af = 0.

As shown in Figure 4, with increasing flow speed, the 

frequency showing the peaks of modal radiation 

impedance moves toward the low frequency while the 

peak values increase. This is due to the fact that some 

acoustically slow inodes can become stTon응ly radiant due 
to flow effect. At high frequency, the resistances 

approach unity and the reactances approach zero. Unlike 
the high-frequency results, the low-frequency data depend 

more upon Mach number. In contrast to the radiation 
resistances, the radiation reactances show a somewhat 
unexpected behavior at low-frequency region. Essentially 

the reactance becomes very large for nonzero Mach 
number. Chang and Leehey have also observed that 
phenomenon about the radiation reactances. They 
observed that subsonic flow has a greater effect on 
radiation reactance (e.g. added mass) than on radiation 

resistance (e.g. radiation damping). Although the effect of 
mode order number is not shown here, the effect of flow

Fig니re 4. The modal radiation impedance of (7,1) mode for a 
square plate at various Mach numbers.

3.2. Coupling of a Structural Mode with 
Tu「b니 ence

In order to evaluate the acoustic radiation in a moving fluid 

medium, one needs to know Tmn()r(a)), the coefficients 

of the modal coupling between a structural mode and the 

TBL pressure field. Modeling of a turbulent wall pressure 
spectrum acting on the plate as a forcing term has been 
a research subject for many years, but there is no overall 
agreement among these models regarding the spectrum in 
the low-wavenumber region. In this study, the Chase 

model[9,l이 is chosen. The wavenumber-frequency spectrum 

suggested by Chase is

Sp(kx,ky,企=(2兀)3疽u汨W履K疣+ 5(屐+岡)阳5]

(23)
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where

K2i = (으七쁘) 2 + 感+ 属+ (m) - 2, / = 此 T,

wc = 0.6woo is the convective velocity, ，* = 0.035z，8 is 

the friction, 3=6S* is the boundary layer layer thickness, 

凯 is the displacement thickness (It is selected in this work 

as approximately 4.2mm in aeronautical environments 
when Mach number number is in the range of from 0.3 

to 0.7), A = 3, cH? = 0.014, c湖= 0.466, bT~ 0.378 

and bM= 0.756- In figure 5. the typical TBL spectra of Chase 

model and Corcos modal are shown. Also the modao 

wavenumber sensitivity function | ^m„(kxtky) | 2 are 

superimposed on the plot of TBL spectrum 

Sp(kx, kyt(w)/SX(w) where Sp(a)) is the point pressure 

spectrum per Hz given as

&(s) = 27ra+p2via)~i[rMaM3(l + 糸)+ "QWi + 展、)]

kx/kc

Figure 5. Typical characteristics of wavenumber sensitivity 
function | 0 0) I 2 as superimposed on
the wavenumber spectrum
& SfQ心 for (7, 1) mode of a square

plate and St = a)mndt /Wco= 0.2.

where (??= 1 + T, kc^=a)!uc is the

convective wavenumber, rt=0.389, ^=1-方，a=0.766. and 
H =0.176. The mode sensitivity function of a plate has a 
high peak at modal wavenumber ^mn . Since the structural 
wave speed and the flow speed are usually of much closer 

orders of magnitude in most aeronautical environments, 
the full wavenumber spectrum of the TBL function can 
excite the structural mode. Therefore the coupling of a 
structural mode and TBL pressure field should be 
computed after considering the effect of full wavenumber 
region. Using Chase model, one can estimate the modal 

coupling coefficients Tqrmn{a)) using two-dimensional 

Gaussian quadrature. The normalized coupling coefficients, 

JmnqXai)，is defined as

4次仞=&(G泌 (24)

In Figure 6. the coupling coefficients for a simply 

supported rectangular plate at various mode order 

numbers (m,n) are shown using both Chase model and 

Corcos model, for comparison purpose. The comparison 
says that the contribution to the coupling by the 

low-wavenumber region becomes dominant in aeronautical 
environments as frequency increases and flow speed 
decreases. The coupling due to model degeneracy is not 

significant. This fact implies that the cross terms TQrmn, 

where or r=f=nt can be neglected (see Eq.(15)).

Figure 6. The coupling by TBL wavenumber spectrum for a
square plate at various mode order numbers.

3.3. Coupling of Structural Mode with 
Mechanical Forces

Mechanical point forces are considered in this work. 

For stationary random multiple point forces, the modal 

force /m„((y) is given as

= fAAx,y,(v)0 mn(x,y)dxdy=名/£勿。mn(xa,ya)

(25)

where Fa( co) is the o-th point force spectrum and Nf 

is the number of input point forces. Thus FmnQrk o)) is 

found to be

Fmw(0) = mn( xa t 0 x0, y0) Sa^ tw) (26)

where S^( s) is the one-sided spectral density 

function of the a -th and -th point forces defined by

SaE(©)= 亲픘。으 Fah饥 T)F认®, T) .In case of multiple

point forces possessing identical bandlimited white noise 
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spectra, the spectral density can be written as

Sg(©)={ SXa>),(wi<ty<<W2

otherwise

S必(G*={ rS/(tw),fyi<(w<(W2

Q, otherwise

where r is the mechanical forces' correlation coefficient 

( — 1MM1). Using the same procedure as the case of 

the point forces, the modal force and the coupling 

coefficient of the multiple area forces can be easily 

obtained.

IV. Numerical Results of Acoustic Power 
Radiation

Several numerical problems were tested to illustrate the 

nature of the sound radiation from a plate excited by 
turbulence or mechanical forces. A square plate with 

dimensions of lx — Zy—0.8m, thickness of /z = 3mm, 

structural loss factor 〃 = 0.004, mass density of 7700kg 
/m3, poisson's ratio of v -0.28, and Young's modulus of 
E=1.95 X 钮匕 Was prepared. The plate is simply

supported and excited in air medium, that has density of 

p =1.21 kg/m3 and sound speed of c-343m/sec. The 

acoustic-coincidence frequency o)ac is approximately 4kHz in 

a stationary fluid medium.

Table 1. Center frequencies and numbers of excited modes of 
one-third octave excitation band.

center frequency
(Hz)

wavenumber ratio

物)

number of excited 
modes

500 0.349 7
630 0.391 8
800 0.439 11

1000 0.492 17
1250 0.553 20
1600 0.620 23
2000 0.696 32
2500 0.780 39
3150 0.876 49
4000 0.983 62

Approximate solutions for acoustic power integrated 

over one third octave band A o) are presented. The 
center frequencies and the number of excited modes are 

summarized in Table 1. All the predictions were done in 
the frequencies above the convective-coincidence frequency

a)cc and below the acoustic-coincidence frequency a)cc . 

When convective coincidence occurs at that

frequency, where 庇=(《*决/£沪“js the structural free 

wavenumber at the center frequency of the one third 

octave band. The relationship between a)cc and a)ac is 

given as

•응쯔 =(응)2aO.36Af2 (28)

where M is the Mach number. When M=0.5 and 

3qc = 4KHn, a)cc becomes 360Hz. In order to illustrate 

the effect of flow speed on the radiation characteristics, 

the results for radiated acoustic power and frequency­
average radiation efficiency are presented at various flow 

speeds. Frequency-average radiation efficiency can be 

obtained as

a— psW/pc£v (29)

where the approximate solution for the vibration 

energy is given by

a?
&N 仞，切,

m, n

For comparison, the average radiation efficiency obtained 
by using both Rayleigh integral and modal expansion 

technique in a stationary fluid medium (in that case 

Tqrmn(o)) = 0) are plotted in Figure 7. Both results are 

very much identical as expected.
In Figure 8, the acoustic powers and the average 

radiation efficiencies are plotted when a mechanical point 
force with white noise spectrum excites at the center point. 

The acoustic power caused by the interactions of elastic 
modes is negligibly small within the given band 
(coupling power/total power<105 in most cases), although 

it is not shown here. Figure 8 shows that moving fluid 
has a great effect on the characteristics of acoustic radiation. 
As flow speed increases, the acoustic-coincidence frequency 

decreases. When Af=0.5, the acoustic-coincidence frequency 

occurs at about 刼也斉0.5, due to the effect of moving 

fluid. As expected, it is because the peaks of the 

radiation resistance move toward the lower frequency as 

flow speed increases.
In Figure 9, the acoustic powers as varying the flow 

speed are plotted when the plate is excited by turbulent 

pressure field. That is the case when there are no mechanical 

forces (Fg湖 (⑦) = 0). At frequencies well below ac이】Stic 
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coincidence, the acoustic power is nearly constant. At 

frequencies near acoustic coincidence, a resonant type peak is 

observed (切如석:0.5 ”tM=0.5 and 비k谷0.6 次M=0.4). 

In contrast to the case of mechanical excitation, the 

effect of flow speed on the radiation characteristics is not 

significant at frequencies well above convective 

coincidence. This means that as flow speed increases the 
acoustic power uniformly increases independent of 
frequency. The reason is that some acoustically slow 
modes can become strongly radiant due to flow effect 
but the amplitude of the TBL wavenumber spectrum in 

low-wavenumber region is so small that the product of the 

radiation resistance Rmnmn and the turbulent forcing 

function Tmnmn does not much increase due to the flow 

effect, as compared to the case of mechanical excitation 

Fmnmn with white-noise spectrum.

(b) Average radiation efficiencies

Figure 8. Acoustic powers and radiation efficiencies due to 
Mach number for point force excitation at the 
plate center (7板咖(必)=0).

Figure 7. Comparison of radiation efficiencies obtained by 
using Rayleigh integral and using modal expansion 
at M 드 0.

Figure 9. One-third octave band acoustic powers due to Mach 
number for turbulent excitation (FqrJn„(a}) — 0).

V. Conclusion

A theoretical formulation for computing acoustic power 
radiation from a rectangular plate in an infinite rigid 

baffle exposed to flow turbulence and mechanical forces 

in a uniform subsonic flow has been presented. The 
approximate solution for the acoustic power radiated from 

a plate excited by random forces was obtained assuming 
light fluid loading on the plate and low structural 
damping. In order to numerically predict acoustic 

radiation, the modal acoustic impedance, 2WK17r((w), 

between a structural mode and acoustic pressure and the 

modal coupling coefficients, TQymn(a))t between a 

structural mode and flow turbulence were evaluated in a 
subsonic flow field. An efficient method to evaluate the 

modal acoustic impedance was suggested by using 
averaged Green function.
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Numerical predictions for the acoustic power radiation 

from a simply supported rectangular plate excited by 

turbulent pressure field and random mechanical forces 

were made in a subsonic flow field. It was shown that 
moving fluid gives more significant effect on radiation 
characteristics due to mechanical force excitation than 

due to turbulent excitation. For a broadband excitation 

which means that many modes are involved in plate 

response, the reasonable solution for the acoustic power 
radiated from a plate with random forces such as flow 
turbulence and mechanical forces in a subsonic flow field 
was obtained by considering the resonant modes only.

Further studies can be followed to reduce the acoustic 
power radiation from a plate due to turbulent pressure 

fluctuations. The simplified formulation can be used to 
design mechanical input forces to reduce the acoustic 

power radiation from a plate. In practical situation, it 
will be difficult to obtain the relationship between input 

forces and flow turbulence.
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