• Title/Summary/Keyword: combined cycle

Search Result 859, Processing Time 0.036 seconds

Performance Evaluation of Combined Heat and Power Plant Configurations -Thermodynamic Performance and Simplified Cost Analysis (열병합 발전소의 구성안별 성능 평가 방안 - 플랜트 열성능 및 단순화 발전단가 분석)

  • Kim, Seungjin;Choi, Sangmin
    • Journal of the Korean Society of Combustion
    • /
    • v.18 no.3
    • /
    • pp.1-8
    • /
    • 2013
  • Thermodynamic and economic analyses of various types of gas turbine combined cycle power plants have been performed to establish criteria for optimization of power plants. The concept of efficiency, in terms of the difference in energy levels of electricity and heat, was introduced. The efficiency of power and heat generation by power plants with other purposes was estimated, and power generation costs were figured out for various types of combined heat and power plants(i.e., fired and unfired, condensing and non-condensing modes, single or double pressure HRSG).

Performance Characteristics of a Combined Regenerative Ammonia-Water Based Power Generation Cycle Using LNG Cold Energy (LNG 냉열을 이용하는 암모니아-물 복합 재생 동력 사이클의 성능 특성)

  • Kim, Kyounghoon;Oh, Jaehyeong;Jeong, Youngguan
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.24 no.6
    • /
    • pp.510-517
    • /
    • 2013
  • The ammonia-water based power generation cycle utilizing liquefied natural gas (LNG) as its heat sink has attracted much attention, since the ammonia-water cycle has many thermodynamic advantages in conversion of low-grade heat source in the form of sensible energy and LNG has a great cold energy. In this paper, we carry out thermodynamic performance analysis of a combined power generation cycle which is consisted of an ammonia-water regenerative Rankine cycle and LNG power generation cycle. LNG is able to condense the ammonia-water mixture at a very low condensing temperature in a heat exchanger, which leads to an increased power output. Based on the thermodynamic models, the effects of the key parameters such as source temperature, ammonia concentration and turbine inlet pressure on the characteristics of system are throughly investigated. The results show that the thermodynamic performance of the ammonia-water power generation cycle can be improved by the LNG cold energy and there exist an optimum ammonia concentration to reach the maximum system net work production.

Comparative Part Load Performance Analysis of Gas Turbine Power Generation Systems Considering Exhaust Heat Utilization (배열 이용도를 고려한 가스터빈 발전시스템의 부분부하 성능 비교분석)

  • Kim, T. S.
    • 유체기계공업학회:학술대회논문집
    • /
    • 2002.12a
    • /
    • pp.290-297
    • /
    • 2002
  • This paper presents analysis results for the effect of power control strategies on the part load performance of gas turbine based power generation systems utilizing exhaust heat of the gas turbine such as cumbined cycle power plants and regenerative gas turbines. For the combined cycle, part load efficiency variations were compared among different single shaft gas turbines representing various technology levels. Power control strategies considered were fuel only control and IGV control. It has been observed that gas turbines with higher design performances exhibit superior part load performances. Improvement of part load efficiency by adopting air flow modulation was analyzed and it is concluded that since the average combined cycle performance is affected by the range of IGV control as well as its temperature control principle, a control strategy appropriate for the load characteristics of the individual plant should be adopted. For the regenerative gas turbine, it is likewise concluded that maintaining exhaust temperature as high as possible by air flow rate modulation is required to increase part load efficiency.

  • PDF

A Performance Monitoring Method for Combined Cycle Power Plants (복합화력 성능감시 정량화 기법)

  • Joo, Yong-Jin;Kim, Si-Moon;Seo, Seok-Bin;Kim, Mi-Young;Ma, Sam-Sun;Hong, Jin-Pyo
    • The KSFM Journal of Fluid Machinery
    • /
    • v.12 no.5
    • /
    • pp.39-46
    • /
    • 2009
  • This paper outlines how the on-line performance monitoring system can be used to improve the efficiency and maintenance of the equipments. And a method of the heat rate allocation to each equipment was suggested to monitor the performance of combined cycle power plants. This calculates the expected heat rate of current conditions and compares it with actual values. Loss allocation in heat rate is reconciled by calculating the magnitude of the deficiency contributed by major components, such as the gas turbine, heat recovery steam generator, steam turbine and condenser. Expected power output is determined by a detailed model and correction curves of the plant. This simulation models are found to reproduce high accuracy in behavior of the cycle for various operating conditions, both in design and in off-design condition. Errors are lower than 2% in most cases.

Numerical Study on a Poly-Generation Based on Gasification for Retrofit of a Natural Gas Combined Cycle (복합계통 개조를 위한 가스화 폴리제너레이션 시뮬레이션 연구)

  • Seo, Dong-Kyun;Joo, Yong-Jin;Hong, Jin-Phyo;Kim, Kyung-Rae;Lee, Jeong-Bak
    • KEPCO Journal on Electric Power and Energy
    • /
    • v.3 no.2
    • /
    • pp.141-146
    • /
    • 2017
  • In this work, a simulation study on net 500 MW class of Poly-Generation was conducted for the retrofit of an aged natural gas combined cycle. An entrained gasifier which has a capacity of maximum $260,000Nm^3/h$, 50 MW class of a Polymer Electrolyte Membrane Fuel Cell, and H-class Gas Turbine were selected as key processes. After unit design for those employed processes was set up and combined, the simulation was carried out with Gate-Cycle software (Ver. 6.0) for two cases. The selected cases are a retrofit type (Poly-Gen 1) and a new type (Poly-Gen 2). It was found that the efficiency of the retrofit case is 2.7% lower than that of the new case.

Thermodynamic Performance Characteristics of Organic Rankine Cycle (ORC) using LNG Cold Energy (LNG 냉열을 이용하는 유기랭킨사이클(ORC)의 열역학적 성능 특성)

  • Kim, Kyoung Hoon;Ha, Jong Man;Kim, Kyung Chun
    • Journal of the Korean Institute of Gas
    • /
    • v.18 no.2
    • /
    • pp.41-47
    • /
    • 2014
  • In this work a thermodynamic performance analysis is carried out for a combined cycle consisted of an organic Rankine cycle (ORC) and a LNG cycle. The combined system uses a low grade waste heat in the form of sensible energy and the LNG cold energy is used for power generation as well as for heat sink. The effects of the key parameters of th system such as turbine inlet pressure, condensation temperature and source temperature on the characteristics of system are throughly investigated. The simulation results show that the thermodynamic performance of the combined system can be significantly improved compared to the normal ORC which is not using the LNG cold energy.

Conceptual Design Study on Rocket Based Combined Cycle Engine (로켓 기반 복합사이클 엔진의 개념설계)

  • Kang, Sang Hun;Lee, Yang Ji;Yang, Soo Seok
    • Aerospace Engineering and Technology
    • /
    • v.12 no.1
    • /
    • pp.111-119
    • /
    • 2013
  • Conceptual design of RBCC (Rocket Based Combined Cycle) engine is performed through the thermodynamic cycle analysis. The engine is designed to take off at sea level and accelerate to Mach 8 at 30 km altitude. According to the flight speed, the engine operating modes are categorized into 3 modes : Ejectorjet (~ Mach 3), Ramjet (Mach 3~6), Scramjet (Mach 6~8). As a design result, the engine has a diameter of 1 m and a length of 6.7 m. In the prediction results, its maximum thrust is 16.5 ton. In Ramjet and Scramjet modes, design condition of the engine intake influence the engine thrust according to the flight speed.

Performance Characteristics of Combined Heat and Power Generation with Series Circuit Using Organic Rankine Cycle (유기랭킨사이클을 이용한 직렬 열병합 사이클의 성능 특성)

  • Kim, Kyoung-Hoon;Jung, Young-Guan
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.22 no.5
    • /
    • pp.699-705
    • /
    • 2011
  • A combined heat and power cogeneration system driven by low-temperature sources is investigated by the first and second laws of thermodynamics. The system consists of Organic Rankine Cycle (ORC) and an additional process heater as a series circuit. Seven working fluids of R152a, propane, isobutane, butane, R11, R123, isopentane and n-pentane are considered in this work. Maximum mass flow rate of a working fluid relative to that of the source fluid is considered to extract maximum power from the source. Results indicate that the second-law efficiency can be significantly increased due to the combined heat and power generation. Furthermore, higher source temperature and lower turbine inlet pressure lead to lower second-law efficiency of ORC system but higher that of combined system. Results also show that the optimum working fluid varies with the source temperature.

Analysis of a Refrigeration Cycle Driven by Refrigerant Steam Turbine (냉매증기터빈에 의해 구동되는 냉동사이클의 해석)

  • 정진희
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.14 no.10
    • /
    • pp.801-810
    • /
    • 2002
  • We have analyzed a combined cycle employing refrigerant Rankine cycle and simple refrigeration cycle with one working fluid. Although this cycle shows promising aspects such as simplicity, it does not have a good efficiency to compete with the other existing technologies because of high temperature at the exit of the turbine. However, by introducing a recuperator, it is found that the cycle efficiency can be improved up to the level much higher than other technology's efficiency.

Environmental Noise Evaluation of the Boundary Areas for 1200MW Combined Cycle Power Plant (1200MW 복합화력 발전소가 부지경계에 미치는 환경소음 예측)

  • 이현;김연환;김희수;배용채;김성휘
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2001.05a
    • /
    • pp.1056-1061
    • /
    • 2001
  • This paper describes the evaluation of noise influence of residental and boundary areas from power plant noise sources of 1200MW combined cycle power plant. Noise assessments are carried out by based on the ISO 3744, ISO 9613-1 and ISO 9613-2 to predict the noise distribution to satisfy the recommended noise level at specific locations and to calculate properly the octave noise power of main noise sources such as power transformers. air-intakes, stacks.

  • PDF