• Title/Summary/Keyword: combined capsaicin

Search Result 10, Processing Time 0.028 seconds

Combined Treatment with 5-Fluorouracil and Capsaicin Induces Apoptosis in HT-29 Human Colon Cancer Cells (5-Fluorouracil과 Capsaicin의 병용에 의한 HT-29 대장암세포 사멸 증진 효과)

  • Lee, Yun-Seok;Lee, Jong-Suk;Kim, Jung-Ae
    • YAKHAK HOEJI
    • /
    • v.53 no.4
    • /
    • pp.184-188
    • /
    • 2009
  • Fluorouracil (5-FU) is one of the most widely used chemotherapeutic drugs in the treatment of advanced colorectal cancer patients. Capsaicin (N-vanillyl-8-methyl-alpha-nonenamide), a spicy component of hot pepper, is a homovanillic acid derivative that preferentially induces cancer cells to undergo apoptosis. The purpose of the present study is to examine whether capsaicin enhances the anticancer effect of 5-fluorouracil in HT-29 human colon cancer cells by inducing apoptosis, and whether PPARgamma is involved in the capsaicin action in combination treatment with 5-FU. Treatment of the cells with either 5-FU or capsaicin alone for 48 h had little effect on the cell viability up to $50{\mu}M$ concentration, whereas co-treatment of the cells with capsaicin in the presence of 5-FU for 48 h significantly decreased the cell viability in a concentration-dependent manner. In addition, caspase-3 activity, a marker enzyme for apoptosis, was significantly increased by the combined treatment with 5-FU and capsaicin compared to the 5-FU or capsaicin alone treatment. Also, treatment with troglitazone, a peroxisome proliferator-activated receptor gamma ($PPAR{\gamma}$) agonist, further enhanced the effect of the combination treatment on the cell viability and caspase-3 activity, and bisphenol A diglycidyl ether (BADGE), a $PPAR{\gamma}$ antagonist, blocked the effect of the combination treatment. These results suggest that the combination treatment of HT-29 cells with 5-FU and capsaicin induces apoptotic cell death at relatively low concentration than each drug alone, and the combination treatment may be associated with the $PPAR{\gamma}$ pathway activation.

The Change of Tartrate Resistant Acid Phosphatase Activity in Capsaicin-Induced Canine Chondrocyte Death (개 연골세포의 손상에 의한 Tartrate Resistant Acid Phosphatase 활성의 변화 측정)

  • Seol Jae-Won;Lee Hae-Beom;Kim Nam-Soo;Kim In-Shik;Kang Hyung-Sub;Lee Young-Hoon;Kang Dong-Won;Park Sang-Youel
    • Journal of Veterinary Clinics
    • /
    • v.23 no.2
    • /
    • pp.144-148
    • /
    • 2006
  • Apoptotic death of articular chondrocytes has been implicated in the pathogenesis of osteoarthritis. Tartrate resistant acid phosphatase (TRAP) has been used for several years as a marker enzyme of bone-resorbing osteoclasts. This study investigated the activity of TRAP in media of apoptotic cell death-induced canine chondrocyte. We exposed canine chondrocyte to capsaicin and the results showed that capsaicin induced cell death in a dose dependent manner. And we measured TRAP activity in media of chondrocyte death induced by capsaicin treatment and the results capsaicin significantly increased the activity of TRAP in media for dose dependent. We also investigated whether the combination treatment with capsaicin and TRAIL enhance apoptotic cell death in canine chondrocyte. We exposed canine chondrocyte to capsaicin for 24 hrs at the indicated dose, and then treated with recombinant TRAIL protein for 24 hrs. TRAIL alone did not induce cell death after 24 hours, but the combined treatment of both induced more cell death compared with capsaicin alone in a dose dependent manner. Also, the combination treatment with capsaicin and TRAIL increased the activity of TRAP in culture media. These results suggest that TRAP can flow out into extracellular after chondrocyte damage, and TRAP may be a successful biomarker for detection of joint disease such as osteoarthritis.

Effect of Capsaicin on L-Ascorbic Acid Level in Various Tissues and Its Urinary Excretion in Rats

  • Yu, Rina;Kurata, Tadao
    • Preventive Nutrition and Food Science
    • /
    • v.1 no.1
    • /
    • pp.69-74
    • /
    • 1996
  • Capsaicin(CAP) is a pungent ingredient of hot pepper that has been used as a spicy food additive, pre-servative, and medicine. In this study, the effect of CAP on L-ascorbic acid(AsA)level in various tissues as well as its urinary excretion. and drug-metabolizing enzyme activity in rats were investigated. Rats fed AsA-deficient diets for 17days were injected intraperitoneally with 1mg of CAP in 0.5ml of ethanol-Tween 80-saline(20 :10 : 70, v/v/v). Control rats received the equal volume of the same solution without CAP. Urine was collected for 3 day after the CAP injection, and after 5 days tissues were removed; their AsA contents were measured by high performance liquid chromatography combined with and electrochemical detector. In addition, hepatic microsomal ethoxyresorfin O-deethylase(EROD) activity as measured. Urinary AsA excretion changed significantly following CAP injection. One and two days after CAP injection, the urinary AsA increased 2-and 3-fold in the CAP injected group, compared to the control, but the contents of adrenal glands and brain were lower than those of the control Dehydroascorbic acid contents in adrenal glands of the CAP injected group were higher than that of the control These results suggested that a single large dose of CAP could temporarily cause the redistribution of AsA in tissues accompanying by its urinary excretion, by affecting probably a biological system including mixed function oxygenase system(MFOS)

  • PDF

Studies on the Antioxidant Activity of Capsaicin and Oleoresin from Red Pepper in Grounded Bacon Belly Meat (베이컨 육에 있어서 고추 Capsaicin 및 Oleoresin의 항산화 작용에 관한 연구)

  • Lee, Chi-Ho;Chung, Ku-Yong;Lim, Seong-Cheon;Choi, Do-Young;Kim, Cheon-Jei;Choi, Byung-Kyu
    • Korean Journal of Food Science and Technology
    • /
    • v.26 no.5
    • /
    • pp.496-499
    • /
    • 1994
  • The antioxidant effect of capsaicin, the pungent principle of red pepper and oleoresin extracted from red pepper was investigated by measuring TBA(Thiobarbituric acid) value and hydroperoxide value using CL-HPLC(Chemiluminescence-high performance liquid chromatography) during storage at $30^{\circ}C$. The antioxidant activity of capsaicin and oleoresin was compared with erythorbate already used. The antioxigenic effect of capsaicin and oleoresin was very effective to the preservation of ground bacon belly meat. Especially, oleoresin have a remarkable effect to prevent the peroxidation of ground bacon belly meat. Capsaicinoids were known as the main additives in Korea, but the antioxidant activity of meat products has not been reported. So, we suggest that capsaicin, especially, oleoresin combined with other natural antioxigenic substances as like tocopherol may be effective to prevent the oxidation of ground bacon belly meat.

  • PDF

DAMGO, a ${\mu}-Opioid$ Agonist and Cholecystokinin-Octapeptide Have Dual Modulatory Effects on Capsaicin-Activated Current in Rat Dorsal Root Ganglion Neurons

  • Eun, Su-Yong;Kim, Ji-Mok;Lee, Ji-Hye;Jung, Sung-Jun;Park, Joo-Min;Park, Yun-Kyung;Kim, Dong-Kwan;Kim, Sang-Jeong;Kwak, Ji-Yeon;Kim, Jun
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.5 no.1
    • /
    • pp.71-78
    • /
    • 2001
  • Capsaicin, a pungent ingredient of hot pepper, elicits an intense burning pain when applied cutaneously and intradermally. Activation of capsaicin-gated channel in C-type dorsal root ganglion (DRG) neurons produces nonselective cationic currents. Although electrophysiological and biochemical properties of capsaicin-activated current $(I_{CAP})$ were studied, the regulatory mechanism and intracellular signaling pathway are still unclear. In the present study, we investigated the modulations of $I_{CAP}$ by DAMGO $({\mu}-opioid\;agonist)$ and cholecystokinin octapeptide (CCK-8). In 18 out of 86 cells, the amplitude of $I_{CAP}$ was significantly increased by DAMGO and completely reversed after washout, while $I_{CAP}$ was decreased by DAMGO in 25 cells. In 43 cells, DAMGO had no effect on $I_{CAP}$. Mean action potential duration was significantly different between 'increased-by-DAMGO' group and 'decreased-by-DAMGO' group. Mean amplitudes of $I_H$ were not significantly different between both groups. CCK-8 reversibly enhanced the amplitude of $I_{CAP}$ (5/13). DAMGO also increased $I_{CAP}$ amplitude significantly in the same cells. The amplitude of $I_{CAP}$ was increased in additive manner by combined applications of DAMGO and CCK-8 in these cells. These results suggest that DAMGO and CCK-8 can either increase or decrease $I_{CAP}$ presumably depending on the subtypes of DRG cells and classified by electrophysiological properties.

  • PDF

Changes in Volatile Components and Capsaicin of Oleoresin Red Pepper during Cooking (고추 Oleoresin의 가열조리중 휘발성 성분 및 Capsaicin의 변화)

  • 최옥수;하봉석
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.23 no.2
    • /
    • pp.232-237
    • /
    • 1994
  • Changes of volatile components in modified oleoresin red pepper during cooking at high temperature were investigated. Dried red pepper was milled to 100mesh of size particle and oily compounds were extracted by reduced pressure steam distrillation. The rest part was reextracted and concentrated. The extracts were combined. The same volume of water and 4% of polyglycerol condensed ricinoleate (PGDR) were added to the combined extract, and emulsified to make oleoresin red pepper 119 volatile compounds were separated from the dried red pepper and oleoresin and 35 components were identified in both samples. The major flavor compounds were identified to be 2-methoxy-phenol, 2, 6-bis(1, 1-dimethylethyl)-4-methyl-phenol, 1, 4-dimethylbenzene, thylbenzene, 1, 2-benzenedicarboxylic acid, 2-methoxyl-4-methylphenol, 4-ethyl-2-methoxy-phenol, and 5- methyl-2-furancarboxyaldehyde, and their transferal from raw red pepper to oleresin was low. 93 voltilie compounds were isolated after 3 hours cooking at 100 and 82 volitile compounds were separated after that at $150^{\circ}C$. Degeneration of volatile compounds was peculiarly proportional to the temperature of cooling. Capsaicin was relatively stable during cooking and remaining ratio after cooking at 100 and $150^{\circ}C$ was 84.7% and 73.3%. respectively. Oleoresin from red pepper had a little antioxidation effect at $100^{\circ}C$ cooking, but, antioxidation effect at $150^{\circ}C$ cooking was not shown due to degradation of capsaicin.

  • PDF

Quality Characteristics of Wet Noodles Combined with Cheongyang Hot Pepper (Capsicum annuum L.) Juice (청양고추 착즙액 첨가에 따른 생면의 품질특성)

  • Hwang, In-Guk;Kim, Ha-Yun;Hwang, Young;Jeong, Heon-Sang;Yoo, Seon-Mi
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.40 no.6
    • /
    • pp.860-866
    • /
    • 2011
  • We conducted this study to investigate the quality characteristics and antioxidant activity of noodles combined with Cheongyang hot pepper juice (CPJ). The noodles were evaluated for cooking properties (weight, volume, water absorption, and turbidity), Hunter's color values, texture characteristics, sensory characteristics, capsaicin, dihydrocapsaicin, polyphenol contents, and antioxidant activity. The cooked weight, volume, and turbidity of the cooked treated noodles were not significantly different from the cooked control noodles but water absorption decreased. The Hunter's color L value of the cooked noodles was not significantly different between treatment types, but there was a significantly higher b value with increasing concentrations of CPJ. The texture characteristics (hardness, adhesiveness, springiness, gumminess, and chewiness) of the cooked treated noodles were not significantly different from the cooked control noodles. A sensory evaluation indicated that cooked noodles treated with 2% CPJ were significantly (p<0.05) better than the cooked control noodles. Capsaicin, dihydrocapsaicin, and polyphenol contents, and antioxidant activity were significantly (p<0.05) increased with increasing concentrations of CPJ. In conclusion, CPJ could be used as an ingredient to increase the sensory and antioxidant properties of wheat flour noodles without affecting their quality characteristics.

Alterations of Heart Rate Variability upon β3-Adrenergic Receptor Polymorphism and Combined Capsaicin, Sesamin, and L-Carnitine in Humans (복합 캡사이신, 세사인, 그리고 카르니틴과 베타3 유전자 다형에 대한 심박수 변이성의 영향)

  • Shin, Ki-Ok;Kim, Hyun-Jun;Kang, Sung-Hwun
    • Journal of Life Science
    • /
    • v.18 no.3
    • /
    • pp.291-297
    • /
    • 2008
  • We investigated whether 1) the combined capsaicin (75 mg), sesamin (30 mg), and L-carnitine (900 mg) (CCSC) ingestion enhances autonomic nervous system (ANS) activities including thermogenic sympathetic activity as energy metabolic modulator, 2) ${\beta}_3-AR$ polymorphism of each subject influences with ANS activity. Seven healthy males $(22.0{\pm}0.5\;yr)$ volunteered for this study. The cardiac autonomic nervous activities evaluated by means of heart rate variability of power spectral analysis were continuously measured during 5 min every 30 min for total 120 min resting condition with CCSC or placebo oral administration chosen at random. The results indicated that, there are not $Arp/Arg^{64}$ variants of the ${\beta}_3-AR$ genotypes in our subjects. There were not also significant differences in heart rate during rest between both trials. The difference of ANS activity did not reach the statistical significance between both trials. However, the significant improvement showed TOTAL power, HF component, and the indices of SNS and PNS activities before and at 30 min after CCSC ingestion (p<0.05, respectively). In conclusions, although each component of combined CCSC is associated with lipolysis and/or fat oxidation, the combined CCSC consumption is not influenced in stimulation of thermogenic sympathetic activity as modulator of energy metabolism. In rather, our results suggested that CCSC ingestion improves the balance of both SNS and PNS activities. Therefore, it will be considered many combined nutrient components for ergogenic and/or lipolysis effects as well as genetic variants affecting ANS activity in further studies.

Enzymatic and Energetic Properties of an Aerobic Respiratory Chain­Linked NADH Oxidase System in Marine Bacterium Vibrio natriegens

  • Kang, Ji-Won;Kim, Young-Jae
    • Journal of Microbiology and Biotechnology
    • /
    • v.15 no.5
    • /
    • pp.1080-1086
    • /
    • 2005
  • Membranes prepared from Vibrio natriegens oxidized both NADH and deamino-NADH as substrates. The maximum activity of the membrane-bound NADH oxidase was obtained at about pH 8.5 in the presence of 0.2 M NaCl, whereas that of the NADH:ubiquinone oxidoreductase was obtained at about pH 7.5 in the presence of 0.2 M NaCl. Electron transfer from NADH or deamino-NADH to ubiquinone-l or oxygen generated a considerable membrane potential (${\Delta}{\psi}$), which occurred even in the presence of $20{\mu}M$ carbonylcyanide m-chlorophenylhydrazone (CCCP). However, the ${\Delta}{\psi}$ was completely collapsed by the combined addition of $10{\mu}M$ CCCP and $20{\mu}M$ monensin. On the other hand, the activity of the NADH oxidase and the ${\Delta}{\psi}$ generated by the NADH oxidase system were inhibited by about $90\%$ with $10{\mu}M$ HQNO, whereas the activity of the NADH:ubiquinone oxidoreductase and the ${\Delta}{\psi}$ generated at the NADH:ubiquinone oxidoreductase segment were inhibited by about $60\%$. Interestingly, the activity of the NADH:ubiquinone oxidoreductase and the ${\Delta}{\psi}$ generated at the NADH:ubiquinone oxidoreductase segment were resistant to the respiratory chain inhibitors such as rotenone, capsaicin, and $AgNO_3$, and the activity of the NADH oxidase and the ${\Delta}{\psi}$ generated by the NADH oxidase system were very sensitive only to $AgNO_3$. It was concluded, therefore, that V. natriegens cells possess a $AgNO_3$-resistant respiratory $Na^+$ pump that is different from the $AgNO_3$-sensitive respiratory $Na^+$ pump of a marine bacterium, Vibrio alginolyticus.

Effect of mild-intensity exercise training with capsiate intake on fat deposition and substrate utilization during exercise in diet-induced obese mice

  • Hwang, Deunsol;Seo, Jong-beom;Kim, Jisu;Lim, Kiwon
    • Korean Journal of Exercise Nutrition
    • /
    • v.24 no.3
    • /
    • pp.1-6
    • /
    • 2020
  • [Purpose] While the anti-obesity effects of exercise and capsiate are well-observed individually, the effect of exercise with capsiate intake has not been systematically explored yet. Therefore, the purpose of this study is to investigate whether the anti-obesity effects of exercise training can be further enhanced by capsiate intake. [Methods] 8-week-old male mice were divided into 3 groups (n = 8 per group): sedentary group (SED; nontrained), exercise-trained group (EXE) and exercise-trained group with 10 mg/kg of capsiate intake (EXE+CAP). All mice were offered high-fat diet and water ad libitum. The mild-intensity treadmill training was conducted 5 times a week for 8 weeks. After 8 weeks, metabolism during exercise and abdominal fat weight were measured. [Results] Body weight and the rate of total abdominal fat were significantly less in EXE+CAP than in SED but not between EXE and SED. The average of respiratory exchange rate during exercise was significantly much lower in EXE+SED (p = 0.003) compared to the difference between EXE and SED (p = 0.025). Likewise, the fat oxidation during exercise was significantly much higher in EXE+SED (p = 0.016) compared to the difference between EXE and SED (p = 0.045). Then, the carbohydrate oxidation during exercise was significantly much lower in EXE+SED (p = 0.003) compared to the difference between EXE and SED (p = 0.028). [Conclusion] In conclusion, the anti-obesity functions of exercise training can be further enhanced by capsiate intake by increasing fat oxidation during exercise. Therefore, we suggest that capsiate could be a candidate supplement which can additively ameliorate obesity when combined with exercise.