• Title/Summary/Keyword: combinatorial problem

Search Result 265, Processing Time 0.025 seconds

Field Application of Least Cost Design Model on Water Distribution Systems using Ant Colony Optimization Algorithm (개미군집 최적화 알고리즘을 이용한 상수도관망 시스템의 최저비용설계 모델의 현장 적용)

  • Park, Sanghyuk;Choi, Hongsoon;Koo, Jayong
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.27 no.4
    • /
    • pp.413-428
    • /
    • 2013
  • In this study, Ant Colony Algorithm(ACO) was used for optimal model. ACO which are metaheuristic algorithm for combinatorial optimization problem are inspired by the fact that ants are able to find the shortest route between their nest and food source. For applying the model to water distribution systems, pipes, tanks(reservoirs), pump construction and pump operation cost were considered as object function and pressure at each node and reservoir level were considered as constraints. Modified model from Ostfeld and Tubaltzev(2008) was verified by applying 2-Looped, Hanoi and Ostfeld's networks. And sensitivity analysis about ant number, number of ants in a best group and pheromone decrease rate was accomplished. After the verification, it was applied to real water network from S water treatment plant. As a result of the analysis, in the Two-looped network, the best design cost was found to $419,000 and in the Hanoi network, the best design cost was calculated to $6,164,384, and in the Ostfeld's network, the best design cost was found to $3,525,096. These are almost equal or better result compared with previous researches. Last, the cost of optimal design for real network, was found for 66 billion dollar that is 8.8 % lower than before. In addition, optimal diameter for aged pipes was found in this study and the 5 of 8 aged pipes were changed the diameter. Through this result, pipe construction cost reduction was found to 11 percent lower than before. And to conclusion, The least cost design model on water distribution system was developed and verified successfully in this study and it will be very useful not only optimal pipe change plan but optimization plan for whole water distribution system.

Multiobjective Genetic Algorithm for Design of an Bicriteria Network Topology (이중구속 통신망 설계를 위한 다목적 유전 알고리즘)

  • Kim, Dong-Il;Kwon, Key-Ho
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.39 no.4
    • /
    • pp.10-18
    • /
    • 2002
  • Network topology design is a multiobjective problem with various design components. The components such as cost, message delay and reliability are important to gain the best performance. Recently, Genetic Algorithms(GAs) have been widely used as an optimization method for real-world problems such as combinatorial optimization, network topology design, and so on. This paper proposed a method of Multi-objective GA for Design of the network topology which is to minimize connection cost and message delay time. A common difficulty in multiobjective optimization is the existence of an objective conflict. We used the prufer number and cluster string for encoding, parato elimination method and niche-formation method for the fitness sharing method, and reformation elitism for the prevention of pre-convergence. From the simulation, the proposed method shows that the better candidates of network architecture can be found.

The Model to Generate Optimum Maintenance Scenario for Steel Bridges considering Life-Cycle Cost and Performance (강교량의 최적 유지관리 시나리오 선정 모델)

  • Park, Kyung Hoon;Lee, Sang Yoon;Kim, Jung Ho;Cho, Hyo Nam;Kong, Jung Sik
    • Journal of Korean Society of Steel Construction
    • /
    • v.18 no.6
    • /
    • pp.677-686
    • /
    • 2006
  • In this paper, a more practical and realistic method is proposed to establish the lifetime optimum maintenance strategies of the deteriorating bridges considering the life-cycle performance as well as life-cycle cost. The genetic algorithm is applied to generate the set of maintenance scenarios that is the multi-objective combinatorial optimization problem related to lifetime performance and cost as separate objective functions, and the technique to select optimum tradeoff maintenance scenario is presented. Optimum maintenance scenarios could be generated not only at the individual member level but also at the system level of the bridge. Through the analytical results of applying the proposed methodology to the existing bridge, it is expected that the methodology will be effectively used to determine the optimum maintenance strategy for introducing a real preventive maintenance system and overcoming the limits of existing maintenance methods.

Region Segmentation from MR Brain Image Using an Ant Colony Optimization Algorithm (개미 군집 최적화 알고리즘을 이용한 뇌 자기공명 영상의 영역분할)

  • Lee, Myung-Eun;Kim, Soo-Hyung;Lim, Jun-Sik
    • The KIPS Transactions:PartB
    • /
    • v.16B no.3
    • /
    • pp.195-202
    • /
    • 2009
  • In this paper, we propose the regions segmentation method of the white matter and the gray matter for brain MR image by using the ant colony optimization algorithm. Ant Colony Optimization (ACO) is a new meta heuristics algorithm to solve hard combinatorial optimization problem. This algorithm finds the expected pixel for image as the real ant finds the food from nest to food source. Then ants deposit pheromone on the pixels, and the pheromone will affect the motion of next ants. At each iteration step, ants will change their positions in the image according to the transition rule. Finally, we can obtain the segmentation results through analyzing the pheromone distribution in the image. We compared the proposed method with other threshold methods, viz. the Otsu' method, the genetic algorithm, the fuzzy method, and the original ant colony optimization algorithm. From comparison results, the proposed method is more exact than other threshold methods for the segmentation of specific region structures in MR brain image.

Development of the Performance-Based Bridge Maintenance System to Generate Optimum Maintenance Strategy Considering Life-Cycle Cost (생애주기비용을 고려한 성능기반 교량 최적 유지관리 전략 수립 시스템 개발)

  • Park, Kyung-Hoon;Lee, Sang-Yoon;Hwang, Yoon-Koog;Kong, Jung-Sik;Lim, Jong-Kwon
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.11 no.4
    • /
    • pp.109-120
    • /
    • 2007
  • In this study, a bridge maintenance system is developed to generate performance-based optimum maintenance strategy by considering the life-cycle cost. A multi-objective combinatorial optimization problem is formulated to generate a tradeoff maintenance scenarios which satisfies the balance among the conflicting objectives such as the performance and cost during the bridge lifetime and a genetic algorithm is applied to the system. By using the developed program, this study proposes a process of optimum maintenance scenario applying to the steel girder bridge of national road. The developed system improves the current methods of establishing the bridge maintenance strategy and can be utilized as an efficient tool to provide the optimum bridge maintenance scenario corresponding to the various constraints and requirements of bridge agency.

Optimal solution search method by using modified local updating rule in ACS-subpath algorithm (부경로를 이용한 ACS 탐색에서 수정된 지역갱신규칙을 이용한 최적해 탐색 기법)

  • Hong, SeokMi;Lee, Seung-Gwan
    • Journal of Digital Convergence
    • /
    • v.11 no.11
    • /
    • pp.443-448
    • /
    • 2013
  • Ant Colony System(ACS) is a meta heuristic approach based on biology in order to solve combinatorial optimization problem. It is based on the tracing action of real ants which accumulate pheromone on the passed path and uses as communication medium. In order to search the optimal path, ACS requires to explore various edges. In existing ACS, the local updating rule assigns the same pheromone to visited edge. In this paper, our local updating rule gives the pheromone according to the total frequency of visits of the currently selected node in the previous iteration. I used the ACS algoritm using subpath for search. Our approach can have less local optima than existing ACS and find better solution by taking advantage of more informations during searching.

Development of Bridge Management System for Next Generation based on Life-Cycle Cost and Performance (생애주기 비용 및 성능을 고려한 차세대 교량 유지관리기법 개발)

  • Park, Kyung-Hoon
    • Proceedings of the Korean Institute Of Construction Engineering and Management
    • /
    • 2007.11a
    • /
    • pp.167-174
    • /
    • 2007
  • This study proposes a practical and realistic method to establish an optimal lifetime maintenance strategy for deteriorating bridges by considering the life-cycle performance as well as the life-cycle cost. The proposed method offers a set of optimal tradeoff maintenance scenarios among other conflicting objectives, such as minimizing cost and maximizing performance. A genetic algorithm is used to generate a set of maintenance scenarios that is a multi-objective combinatorial optimization problem related to the and the life-cycle cost and performance as separate objective functions. A computer program, which generates optimal maintenance scenarios, was developed based on the proposed method. The subordinate relation between bridge members has been considered to decide optimal maintenance sequence. The developed program has been used to present a procedure for finding an optimal maintenance scenario for steel-girder bridges on the Korean National Road. Through this bridge maintenance scenario analysis, it is expected that the developed method and program can be effectively used to allow bridge managers an optimal maintenance strategy satisfying various constraints and requirements.

  • PDF

Hybrid Techniques for Standard Cell Placement (표준 셀 배치를 위한 하이브리드 기법)

  • 허성우;오은경
    • Journal of KIISE:Computer Systems and Theory
    • /
    • v.30 no.10
    • /
    • pp.595-602
    • /
    • 2003
  • This Paper presents an efficient hybrid techniques for a standard cell placement. The prototype tool adopts a middle-down methodology in which an n${\times}$m grid is imposed over the layout area and cells are assigned to bins forming a global placement. The optimization technique applied in this phase is based on the Relaxation-Based Local Search (RBLS) framework [12]in which a combinatorial search mechanism is driven by an analytical engine. This enables a more global view of the problem and results in complex modifications of the placement in a single search“move.”Details of this approach including a novel placement legalization procedure are presented. When a global placement converges, a detailed placement is formed and further optimized by the optimal interleaving technique[13]. Experimental results on MCNC benchmarking circuits are presented and compared with the Feng Shui's results in[14]. Solution Qualifies are almost the same as the Feng Shui's results.

A Shortest Path Routing Algorithm using a Modified Hopfield Neural Network (수정된 홉필드 신경망을 이용한 최단 경로 라우팅 알고리즘)

  • Ahn, Chang-Wook;Ramakrishna, R.S.;Choi, In-Chan;Kang, Chung-Gu
    • Journal of KIISE:Information Networking
    • /
    • v.29 no.4
    • /
    • pp.386-396
    • /
    • 2002
  • This paper presents a neural network-based near-optimal routing algorithm. It employs a modified Hopfield Neural Network (MHNN) as a means to solve the shortest path problem. It uses every piece of information that is available at the peripheral neurons in addition to the highly correlated information that is available at the local neuron. Consequently, every neuron converges speedily and optimally to a stable state. The convergence is faster than what is usually found in algorithms that employ conventional Hopfield neural networks. Computer simulations support the indicated claims. The results are relatively independent of network topology for almost all source-destination pairs, which nay be useful for implementing the routing algorithms appropriate to multi -hop packet radio networks with time-varying network topology.

Information extraction of the moving objects based on edge detection and optical flow (Edge 검출과 Optical flow 기반 이동물체의 정보 추출)

  • Chang, Min-Hyuk;Park, Jong-An
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.27 no.8A
    • /
    • pp.822-828
    • /
    • 2002
  • Optical flow estimation based on multi constraint approaches is frequently used for recognition of moving objects. However, the use have been confined because of OF estimation time as well as error problem. This paper shows a new method form effectively extracting movement information using the multi-constraint base approaches with sobel edge detection. The moving objects anr extraced in the input image sequence using edge detection and segmentation. Edge detection and difference of the two input image sequence gives us the moving objects in the images. The process of thresholding removes the moving objects detected due to noise. After thresholding the real moving objects, we applied the Combinatorial Hough Transform (CHT) and voting accumulation to find the optimal constraint lines for optical flow estimation. The moving objects found in the two consecutive images by using edge detection and segmentation greatly reduces the time for comutation of CHT. The voting based CHT avoids the errors associated with least squares methods. Calculation of a large number of points along the constraint line is also avoided by using the transformed slope-intercept parameter domain. The simulation results show that the proposed method is very effective for extracting optical flow vectors and hence recognizing moving objects in the images.