• Title/Summary/Keyword: combinatorial libraries

Search Result 14, Processing Time 0.023 seconds

Effective Generation of Lead Compounds by High Throughput Organic Synthesis: using Multipurpose Privileged Bezopyrans

  • Gong, Young-Dae;Seo, Jin-soo;Hwang, Jong-Yeon;Park, Ji-Yeon;Yoo, Sung-Eun
    • Proceedings of the PSK Conference
    • /
    • 2003.10a
    • /
    • pp.89-89
    • /
    • 2003
  • Numerous lead compounds, based on multipurpose privileged structures, can be generated that address a variety of targets from a gene family of interest, irrespective of therapeutic area. Solid-phase organic synthesis has been emerged as a powerful technique in generating combinatorial libraries of small organic molecules useful for drug discovery. Heterocyclic compounds provide scaffolds on which pharmacophores can be arranged to yield potent and selective drugs and a variety of heterocycles have been synthesized on solid support. (omitted)

  • PDF

Selection of Small Synthetic Antimicrobial Peptides Inhibiting Xanthomonas citri subsp. citri Causing Citrus Canker

  • Choi, Jeahyuk;Park, Euiho;Lee, Se-Weon;Hyun, Jae-Wook;Baek, Kwang-Hyun
    • The Plant Pathology Journal
    • /
    • v.33 no.1
    • /
    • pp.87-94
    • /
    • 2017
  • Citrus canker disease decreases the fruit quality and yield significantly, furthermore, emerging of streptomycin-resistant pathogens threatens the citrus industry seriously because of a lack of proper control agents. Small synthetic antimicrobial peptides (AMPs) could be a promising alternative. Fourteen hexapeptides were selected by using positional scanning of synthetic peptide combinatorial libraries. Each hexapeptide showed different antimicrobial spectrum against Bacillus, Pseudomonas, Xanthomonas, and Candida species. Intriguingly, BHC10 showed bactericidal activity exclusively on Xanthomonas citri subsp. citri (Xcc), while BHC7 was none-active exclusively against two Pseudomonas spp. at concentration of $100{\mu}g/ml$ suggesting potential selectivity constrained in hexapeptide frame. Three hexapeptides, BHC02, 06 and 11, showed bactericidal activities against various Xcc strains at concentration of $10{\mu}g/ml$. When they were co-infiltrated with pathogens into citrus leaves the disease progress was suppressed significantly. Further study would be needed to confirm the actual disease control capacity of the selected hexapeptides.

Evaluation of a Sample-Pooling Technique in Estimating Bioavailability of a Compound for High-Throughput Lead Optimazation (혈장 시료 풀링을 통한 신약 후보물질의 흡수율 고효율 검색기법의 평가)

  • Yi, In-Kyong;Kuh, Hyo-Jeong;Chung, Suk-Jae;Lee, Min-Haw;Shim, Chang-Koo
    • Journal of Pharmaceutical Investigation
    • /
    • v.30 no.3
    • /
    • pp.191-199
    • /
    • 2000
  • Genomics is providing targets faster than we can validate them and combinatorial chemistry is providing new chemical entities faster than we can screen them. Historically, the drug discovery cascade has been established as a sequential process initiated with a potency screening against a selected biological target. In this sequential process, pharmacokinetics was often regarded as a low-throughput activity. Typically, limited pharmacokinetics studies would be conducted prior to acceptance of a compound for safety evaluation and, as a result, compounds often failed to reach a clinical testing due to unfavorable pharmacokinetic characteristics. A new paradigm in drug discovery has emerged in which the entire sample collection is rapidly screened using robotized high-throughput assays at the outset of the program. Higher-throughput pharmacokinetics (HTPK) is being achieved through introduction of new techniques, including automation for sample preparation and new experimental approaches. A number of in vitro and in vivo methods are being developed for the HTPK. In vitro studies, in which many cell lines are used to screen absorption and metabolism, are generally faster than in vivo screening, and, in this sense, in vitro screening is often considered as a real HTPK. Despite the elegance of the in vitro models, however, in vivo screenings are always essential for the final confirmation. Among these in vivo methods, cassette dosing technique, is believed the methods that is applicable in the screening of pharmacokinetics of many compounds at a time. The widespread use of liquid chromatography (LC) interfaced to mass spectrometry (MS) or tandem mass spectrometry (MS/MS) allowed the feasibility of the cassette dosing technique. Another approach to increase the throughput of in vivo screening of pharmacokinetics is to reduce the number of sample analysis. Two common approaches are used for this purpose. First, samples from identical study designs but that contain different drug candidate can be pooled to produce single set of samples, thus, reducing sample to be analyzed. Second, for a single test compound, serial plasma samples can be pooled to produce a single composite sample for analysis. In this review, we validated the issue whether the second method can be applied to practical screening of in vivo pharmacokinetics using data from seven of our previous bioequivalence studies. For a given drug, equally spaced serial plasma samples were pooled to achieve a 'Pooled Concentration' for the drug. An area under the plasma drug concentration-time curve (AUC) was then calculated theoretically using the pooled concentration and the predicted AUC value was statistically compared with the traditionally calculated AUC value. The comparison revealed that the sample pooling method generated reasonably accurate AUC values when compared with those obtained by the traditional approach. It is especially noteworthy that the accuracy was obtained by the analysis of only one sample instead of analyses of a number of samples that necessitates a significant man-power and time. Thus, we propose the sample pooling method as an alternative to in vivo pharmacokinetic approach in the selection potential lead(s) from combinatorial libraries.

  • PDF

Resurrection of antibody as a therapeutic drug (항체 : 치료제로서의 부활)

  • Chung, Hong Keun;Chung, Junho
    • IMMUNE NETWORK
    • /
    • v.1 no.1
    • /
    • pp.7-13
    • /
    • 2001
  • Currently 18 monoclonal antibodies were approved by FDA for inj ection into humans for therapeutic or diagnostic purpose. And 146 clinical trials are under way to evaluate the efficacy of monoclonal antibodies as anti-cancer agents, which comprise 9 % of clinical trials in cancer therapy field. When considering a lot of disappointment and worries existed in this field during the past 15 years, this boom could be called as resurrection. Antibodies have several merits over small molecule drug. First of all it is easier and faster in development, as proper immunization of the target proteins usually raises good antibody response. The side effects of antibodies are more likely to be checked out in immunohistomchemical staining of whole human tissues. Antibody has better pharmacokinetics, which means a longer half-life. And it is non-toxic as it is purely a "natural drug. Vast array of methods was developed to get the recombinant antibodies to be used as drug. The mice with human immunoglobulin genes were generated. Fully human antibodies can be developed in fast and easy way from these mice through immunization. These mice could make even human monoclonal antibodies against any human antigen like albumin. The concept of combinatorial library was also actively adopted for this purpose. Specific antibodies can be screened out from phage, mRNA, ribosomal library displaying recombinant antibodies like single chain Fvs or Fabs. Then the coding genes of these specific antibodies are obtained from the selected protein-gene units, and used for industrial scale production. Both $na\ddot{i}ve$ and immunized libraries are proved to be effective for this purpose. In post-map arena, antibodies are receiving another spotlight as molecular probes against numerous targets screened out from functional genomics or proteomics. Actually many of these antibodies used for this purpose are already human ones. Through alliance of these two actively growing research areas, antibody would play a central role in target discovery and drug development.

  • PDF