• Title/Summary/Keyword: comb actuator

Search Result 24, Processing Time 0.023 seconds

A Microcatuator for High-Density Hard Disk Drive Using Skewed Electrode Arrays (경사 전극 배열을 이용한 고밀도 하드 디스크의 마이크로 구동부 제작)

  • Choi, Seok-Moon;Park, Sung-Jun
    • Journal of Institute of Convergence Technology
    • /
    • v.1 no.2
    • /
    • pp.6-15
    • /
    • 2011
  • This paper reports the design and fabrication of a micro-electro-mechanical-system(MEMS)-based electrostatic angular microactuator for a dual-stage servo. The proposed actuator employs a novel electrode pattern named "skewed electrode array(SEA)" scheme. It is shown that SEA has better linearity than a parallel plate type actuator and stronger force than a comb-drive based actuator. The moving and the fixed electrodes are arranged to make the driving force perpendicular to the rotating moment of arm. By changing the electrode overlap length, the magnitude of electrostatic force and stable displacement will be changed. In order to optimize the design, an electrostatic FE analysis was carried out and an empirical force model was established for SEA. A new assembly method which will allow the active electrodes to be located beneath the slider was developed. The active electrodes are connected by inner and outer rings lifted on the base substrate, and the inner and outer rings are connected to platform on which the slider locates. Electrostatic force between active electrodes and platform can be used for exiting out of plane modes, so this provides the possibility of the flying height control. A microactuator that can position the pico-slider over ${\pm}0.5{\mu}m$ using under 20 volts for a 2 kHz fine-tracking servo was designed and fabricated using SoG process.

  • PDF

3D Lithography using X-ray Exposure Devices Integrated with Electrostatic and Electrothermal Actuators

  • Lee, Kwang-Cheol;Lee, Seung S.
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.2 no.4
    • /
    • pp.259-267
    • /
    • 2002
  • We present a novel 3D fabrication method with single X-ray process utilizing an X-ray mask in which a micro-actuator is integrated. An X-ray absorber is electroplated on the shuttle mass driven by the integrated micro-actuator during deep X-ray exposures. 3D microstructures are revealed by development kinetics and modulated in-depth dose distribution in resist, usually PMMA. Fabrication of X-ray masks with integrated electrothermal xy-stage and electrostatic actuator is presented along with discussions on PMMA development characteristics. Both devices use $20-\mu\textrm{m}$-thick overhanging single crystal Si as a structural material and fabricated using deep reactive ion etching of silicon-on-insulator wafer, phosphorous diffusion, gold electroplating, and bulk micromachining process. In electrostatic devices, $10-\mu\textrm{m}-thick$ gold absorber on $1mm{\times}1mm$ Si shuttle mass is supported by $10-\mu\textrm{m}-wide$, 1-mm-long suspension beams and oscillated by comb electrodes during X-ray exposures. In electrothermal devices, gold absorber on 1.42 mm diameter shuttle mass is oscillated in x and y directions sequentially by thermal expansion caused by joule heating of the corresponding bent beam actuators. The fundamental frequency and amplitude of the electrostatic devices are around 3.6 kHz and $20\mu\textrm{m}$, respectively, for a dc bias of 100 V and an ac bias of 20 VP-P (peak-peak). Displacements in x and y directions of the electrothermal devices are both around $20{\;}\mu\textrm{m}$at 742 mW input power. S-shaped and conical shaped PMMA microstructures are demonstrated through X-ray experiments with the fabricated devices.

Dual Stage Actuator System for High Density Magnetic Disk Drives Using a Rotary-type Electrostatic Microatuator (회전구동 정전형 마이크로 액추에이터를 이용한 고트랙밀도 HDD용 이단 구동 시스템)

  • Jung Sunghwan;Choi Jae-Joon;Park Jihwang;Lee Chang-Ho;Kim Cheol-Soon;Min Dong-Ki;Kim Young-Hoon;Lee Seung-Hi;Jeon Jong Up
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.22 no.10 s.175
    • /
    • pp.174-185
    • /
    • 2005
  • This paper presents the design, fabrication, and testing results of a dual stage actuator system for a fine positioning of magnetic heads in magnetic disk drives. A novel rotary microactuator which is electrostatically driven and utilized as a secondary actuator was designed. The stator and rotor electrodes in the microactuator was revised to have the optimal shapes and hence produces much higher rotational torque compared with the conventional comb-shape electrodes. The microactuators were successfully fabricated using SoG(silicon on glass) processing technology, which is known as being cost-effective. The fabricated microactuator has the structural thickness of $45{\mu}m$ with the gap width of approximately $3{\mu}m$. The dynamic characteristic of microactuator/slider assembly was investigated, and its natural frequency and DC gain were measured to be 3.4kHz and 32nm/V, respectively. The microactuator/slider assembly was integrated into a HDD model V10 of Samsung Electronics Co. and a dual servo algorithm was tested to explore the tracking performance of dual stage actuator system where the LDV signals instead of magnetic head signals were used. Experimental results indicate that this system achieves the tracking accuracy of 30nm. This value corresponds to a track density of 85,000 track per inch(TPI), which is about 3 times greater than that of current hard disk drives.

Fabrication of $100{\mu}m$ High Metallic Structure Using Negative Thick Photoresist and Electroplating (Negative Thick Photoresist를 이용한 $100{\mu}m$ 높이의 금속 구조물의 제작에 관한 연구)

  • Chang, Hyun-Kee;Kim, Yong-Kweon
    • Proceedings of the KIEE Conference
    • /
    • 1998.07g
    • /
    • pp.2541-2543
    • /
    • 1998
  • This paper describes the fabrication process to fabricate metallic structure of high aspect ratio using LlGA-like process. SU-8 is used as an electroplating mold. SU-8 is an epoxy-based photoresist, designed for ultrathick PR structure with single layer coating [1,2]. We can get more than $100{\mu}m$ thick layer by single coating with conventional spin coater, and applying multiple coating can make thicker layers. In the experiments, we used different kinds of SU-8, having different viscosity. To optimize the conditions for mold fabrication process, experiments are performed varying spinning time and speed, soft-bake, develop and PEB (Post Expose Bake) condition. With the optimized condition, minimum line and space of $3{\mu}m$ pattern with a thickness of $40{\mu}m$ and $4{\mu}m$ pattern with a thickness of $130{\mu}m$ were obtained. Using the patterned PR as a plating mold, metallic structure was fabricated by electroplating. We have fabricated a electroplated nickel comb actuator using SU-8 as plating mold. The thickness of PR mold is $45{\mu}m$ and that of plated nickel is$40{\mu}m$. Minimum line of the mold is $5{\mu}m$. Patterned metallic layer or polymer layer, which has selectivity with the structural plated metallic layer, can be used as sacrificial layer for fabrication of free-standing structure.

  • PDF