• 제목/요약/키워드: column-beam structure

검색결과 372건 처리시간 0.023초

Seismic performance of prefabricated reinforced concrete column-steel beam sub-assemblages

  • Bai, Juju;Li, Shengcai
    • Earthquakes and Structures
    • /
    • 제22권2호
    • /
    • pp.203-218
    • /
    • 2022
  • In this paper, quasi-static tests were carried out on three prefabricated reinforced concrete column-steel beam (RCS) sub-assemblages with floor slabs and one comparison specimen without floor slab. The effects of axial compression and floor slab on the seismic performance were studied, and finite element simulations were conducted using ABAQUS. The results showed that the failure of prefabricated RCS sub-assemblages with floor occurred as a joint beam and column failure mode, while failure of sub-assemblages without floor occurred due to beam plastic hinge formation. Compared to the prefabricated RCS sub-assemblages without floor slab, the overall stiffness of the sub-assemblages with floor slab was between 19.2% and 45.4% higher, and the maximum load bearing capacity increased by 26.8%. However, the equivalent viscosity coefficient was essentially unchanged. When the axial compression ratio increased from 0.24 to 0.36, the hysteretic loops of the sub-assemblages with floor became fuller, and the load bearing capacity, ductility, and energy dissipation capacity increased by 12.1%, 12.9% and 8.9%, respectively. Also, the initial stiffness increased by 10.2%, but the stiffness degradation accelerated. The proportion of column drift caused by beam end plastic bending and column end bending changed from 35% and 46% to 47% and 36%, respectively. Comparative finite element analyses indicated that the numerical simulation outcomes agreed well with the experimental results.

Research on rotation capacity of the new precast concrete assemble beam-column joints

  • Han, Chun;Li, Qingning;Wang, Xin;Jiang, Weishan;Li, Wei
    • Steel and Composite Structures
    • /
    • 제22권3호
    • /
    • pp.613-625
    • /
    • 2016
  • The joints of the new prefabricated concrete assemble beam-column joints are put together by the hybrid joints of inserting steel under post-tensioned and non-prestressed force and both beams and columns adopt prefabricated components. The low cyclic loading test has been performed on seven test specimens of beam-column joints. Based on the experimental result, the rotation capacity of the joints is studied and the $M-{\theta}$ relation curve is obtained. According to Eurocode 3: Design of steel structures and based on the initial rotational stiffness, the joints are divided into three types; by equivalent bending-resistant stiffness to the precast beam, the equivalent modulus of elasticity $E_e$ is elicited with the superposition method; the beam length is figured out that satisfies the rigid joints and after meeting the requirements of application and safety, the new prefabricated concrete assemble beam-column joints can be regarded as the rigid joints; the design formula adopted by the standard of concrete joint classification is theoretically derived, thereby providing a theoretical basis for the new prefabricated concrete structure.

Study on seismic performance of connection joint between prefabricated prestressed concrete beams and high strength reinforcement-confined concrete columns

  • Jiang, Haotian;Li, Qingning;Jiang, Weishan;Zhang, De-Yi
    • Steel and Composite Structures
    • /
    • 제21권2호
    • /
    • pp.343-356
    • /
    • 2016
  • As the common cast-in-place construction works fails to meet the enormous construction demand under rapid economic growth, the development of prefabricated structure instead becomes increasingly promising in China. For the prefabricated structure, its load carrying connection joint play a key role in maintaining the structural integrity. Therefore, a novel end plate bolt connecting joint between fully prefabricated pre-stressed concrete beam and high-strength reinforcement-confined concrete column was proposed. Under action of low cycle repeated horizontal loadings, comparative tests are conducted on 6 prefabricated pre-stressed intermediate joint specimens and 1 cast-in-place joint specimen to obtain the specimen failure modes, hysteresis curves, skeleton curves, ductility factor, stiffness degradation and energy dissipation capacity and other seismic indicators, and the seismic characteristics of the new-type prefabricated beam-column connecting joint are determined. The test results show that all the specimens for end plate bolt connecting joint between fully prefabricated pre-stressed concrete beam and high-strength reinforcement-confined concrete column have realized the design objectives of strong column weak beam. The hysteretic curves for specimens are good, indicating desirable ductility and energy dissipation capacity and seismic performances, and the research results provide theoretical basis and technical support for the promotion and application of prefabricated assembly frames in the earthquake zone.

Influence of exterior joint effect on the inter-story pounding interaction of structures

  • Favvata, Maria J.;Karayannis, Chris G.;Liolios, Asterios A.
    • Structural Engineering and Mechanics
    • /
    • 제33권2호
    • /
    • pp.113-136
    • /
    • 2009
  • The seismic induced interaction between multistory structures with unequal story heights (inter-story pounding) is studied taking into account the local response of the exterior beam-column joints. Although several parameters that influence the structural pounding have been studied sofar, the role of the joints local inelastic behaviour has not been yet investigated in the literature as key parameter for the pounding problem. Moreover, the influence of the infill panels as an additional parameter for the local damage effect of the joints on the inter-story pounding phenomenon is examined. Thirty six interaction cases between a multistory frame structure and an adjacent shorter and stiffer structure are studied for two different seismic excitations. The results are focused: (a) on the local response of the critical external column of the multistory structure that suffers the hit from the slab of the adjacent shorter structure, and (b) on the local response of the exterior beam-column joints of the multistory structure. Results of this investigation demonstrate that the possible local inelastic response of the exterior joints may be in some cases beneficial for the seismic behaviour of the critical column that suffers the impact. However, in all the examined cases the developing demands for deformation of the exterior joints are substantially increased and severe damages can be observed due to the pounding effect. The presence of the masonry infill panels has also been proved as an important parameter for the response of the exterior beam-column joints and thus for the safety of the building. Nevertheless, in all the examined inter-story pounding cases the presence of the infills was not enough for the total amelioration of the excessive demands for shear and ductility of the column that suffers the impact.

프리캐스트 보와 충전형 강관 기둥 접합부의 거동에 관한 실험적 연구 (The Experimental study on the behavior of precast Girder-Infilled Steel Tube Column joint)

  • 정재우;박성무
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 1995년도 가을 학술발표회 논문집
    • /
    • pp.317-322
    • /
    • 1995
  • This study is to examine the usefulness in using precast girder-infilled steel tube column in reinforced concrete structures through the analysis of the test results, in order to develope the new composite structural system using precast girder-Infilled steel tube column, The variables of specimen are strength of concrete, the numble of hoops, the form of beam-column The variables of specimen are strength of concrete, the number of hoops, the form of beam-column joints. By raising strength of concrete and incresing number of hoops in beam-column joint, it becomes clear to take similar structure capacity to monolithic structures.

  • PDF

Experimental seismic behavior of RC special-shaped column to steel beam connections with steel jacket

  • Hao, Jiashu;Ren, Qingying;Li, Xingqian;Zhang, Xizhi;Ding, Yongjun;Zhang, Shaohua
    • Steel and Composite Structures
    • /
    • 제45권1호
    • /
    • pp.101-118
    • /
    • 2022
  • The seismic performance of the reinforced concrete (RC) special-shaped column to steel beam connections with steel jacket used in the RC column to steel beam fabricated frame structures was investigated in this study. The three full-scale specimens were subjected to cyclic loading. The failure mode, ultimate bearing capacity, shear strength capacity, stiffness degradation, energy dissipation capacity, and strain distribution of the specimens were studied by varying the steel jacket thickness parameters. Test results indicate that the RC special-shaped column to steel beam connection with steel jacket is reliable and has excellent seismic performance. The hysteresis curve is full and has excellent energy dissipation capacity. The thickness of the steel jacket is an important parameter affecting the seismic performance of the proposed connections, and the shear strength capacity, ductility, and initial stiffness of the specimens improve with the increase in the thickness of the steel jacket. The calculation formula for the shear strength capacity of RC special-shaped column to steel beam connections with steel jacket is proposed on the basis of the experimental results and numerical simulation analysis. The theoretical values of the formula are in good agreement with the experimental values.

Large-scale cyclic test on frame-supported-transfer-slab reinforced concrete structure retrofitted by sector lead rubber dampers

  • Xin Xu;Yun Zhou;Zhang Yan Chen;Da yang Wang;Ke Jiang;Song Wang
    • Earthquakes and Structures
    • /
    • 제26권5호
    • /
    • pp.383-400
    • /
    • 2024
  • For a conventionally repaired frame-supported-transfer-slab (FSTS) reinforced concrete (RC) structure, both the transfer slab and the beam-to-column and transfer slab-to-column joints remain vulnerable to secondary earthquakes. Aimed at improving the seismic performance of a damaged FSTS RC structure, an innovative retrofitting scheme is proposed, which adopts the sector lead rubber dampers (SLRDs) at joints after the damaged FSTS RC structure is repaired by conventional approaches. In this paper, a series of quasi-static cyclic tests was conducted on a large-scale retrofitted FSTS RC structure. The seismic performance was evaluated and the key test results, including deformation characteristics, damage pattern, hysteretic behaviour, bearing capacity and strains on key components, were reported in detail. The test results indicated that the SLRDs started to dissipate energy under the service level earthquake, and thus prevented damages on the beam-to-column and transfer slab-to-column joints during the secondary earthquakes and shifted the plastic hinges away from the beam ends. The retrofitting scheme of using SLRDs also achieved the seismic design concept of 'strong joint, weak component'. The FSTS RC structure retrofitted by the SLRDs could recover more than 85% bearing capacity of its undamaged counterpart. The hysteresis curves were featured by the inverse "S" shape, indicating good bearing capacity and hysteresis performance. The deformation capacity of the damaged FSTS RC structure retrofitted by the SLRDs met the corresponding codified requirements for the case of the maximum considered earthquake, as set out in the Chinese seismic design code. The stability of the FSTS RC structure retrofitted by the SLRDs, which was revealed by the developed stains of the RC frame and transfer slab, was improved compared with the undamaged FSTS RC structure.

주상복합구조에서 전이보와 외부기둥 접합부의 반복횡하중 실험 (Cyclic-Loading Test of Exterior Deep-Beam Lower-Column Joint in Upper-Wall Lower-Frame Structure)

  • 이한선;김상연;고동우;권기혁;최성모
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2000년도 가을 학술발표회 논문집(II)
    • /
    • pp.851-856
    • /
    • 2000
  • When subjected to the strong earthquake ground motion, upper-wall lower-frame structures have high possibility of the weak-story failure in the lower frame part. Sufficient strength, energy dissipation capacity and ductility should be provided at the joint between the deep beam and the lower column. In this study, a typical structure was selected for a prototype and four 1:2.5 scaled models, representing the subassemblage including the exterior column and the deep beam, were constructed. The transverse reinforcement was designed according to ACI procedure¹ and the procedure proposed by Sheikh². The inelastic behavior of the subassemblages subjected to the cyclic lateral displacement were evaluated through investigation of the ultimate strength, ductility, load-deformation characteristics. From the test of 4 specimens, it is concluded that the specimens designed according to Sheikh's procedure revealed higher ductility than that by ACI procedure.

Hysteretic Energy Characteristics of Steel Moment Frames Under Strength Variations

  • Choi, Byong Jeong;Kim, Duck Jae
    • Architectural research
    • /
    • 제2권1호
    • /
    • pp.61-69
    • /
    • 2000
  • This research focused on the hysteretic energy performance of 12 steel moment-resisting frames, which were intentionally designed by three types of design philosophies, strength control design, strength and drift control design, and strong-column and weak-beam control design. The energy performances of three designs were discussed In view of strength increase effect, stiffness increase effect, and strong-column and weak-beam effects. The mean hysteretic energy of the 12 basic systems were statically processed and compared to that of single-degree-of-freedom systems. Hysteretic energy was not always increased with an increase of strength and stiffness in the steel moment-resisting frames. Hysteretic energy between strong-column and weak-beam design and drift control design with the same stiffness was not sensitive each other for these types of mid-rises of steel moment-resisting frames.

  • PDF

Design procedure for seismic retrofit of RC beam-column joint using single diagonal haunch

  • Zabihi, Alireza;Tsang, Hing-Ho;Gad, Emad F.;Wilson, John L.
    • Structural Engineering and Mechanics
    • /
    • 제71권4호
    • /
    • pp.341-350
    • /
    • 2019
  • Exterior beam-column joint is typically the weakest link in a limited-ductile reinforced concrete (RC) frame structure. The use of diagonal haunch element has been considered as a desirable seismic retrofit option for reducing the seismic demand at the joint. Previous research globally has focused on implementing double haunches, while the use of single haunch element as a less-invasive and more architecturally favorable retrofit option has not been investigated. In this paper, the key formulations and a design procedure for the single haunch system for retrofitting RC exterior beam-column joint are developed. An application of the proposed design procedure is then illustrated through a case study.